华西医学

华西医学

脊柱侧凸 X 线成像评估的研究进展

查看全文

脊柱侧凸是一种复杂的脊柱三维畸形。X 线成像是脊柱侧凸诊断与评估的重要方法,能够直接测量或间接反映冠状面、水平面和矢状面的脊柱三维畸形特征,预测侧凸进展及治疗效果。三维立体 X 线成像技术的应用,推动了脊柱侧凸三维影像学评估的发展。该文对脊柱侧凸 X 线成像的评估方法、测量信度与效度、三维立体 X 线成像技术进行综述,总结 X 线成像评估脊柱侧凸的规律,为脊柱侧凸诊断与评估提供重要依据。

Scoliosis is a complex three-dimensional spinal deformity, characterized by lateral curvature and vertebral rotation. Radiology plays important roles in the assessments of lateral curvature and vertebral rotation of the patients with scoliosis, as well as the prediction of progression and treatment outcomes of scoliosis. The reliable and validity of radiological assessments have been proved in the coronal, transverse, and sagittal planes of scoliotic spine. With the application of the stereoradiography, three dimensional nature of the scoliosis has been disclosed. This review aims to summarize the radiological methods for the assessments of scoliotic spine, the reliability and validity of each method, as well as the stereoradiography, providing the basis for accurate diagnosis and assessments for the patients with scoliosis.

关键词: 脊柱侧凸; X 线成像; 评估; 文献综述

Key words: Scoliosis; Radiograph; Assessment; Review

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Newton Ede MM, Jones SW. Adolescent idiopathic scoliosis: evidence for intrinsic factors driving aetiology and progression. Int Orthop, 2016, 40(10): 2075-2080.
2. Eijgenraam SM, Boselie TF, Sieben JM, et al. Development and assessment of a digital X-ray software tool to determine vertebral rotation in adolescent idiopathic scoliosis. Spine J, 2017, 17(2): 260-265.
3. Vrtovec T, Pernus F, Likar B. A review of methods for quantitative evaluation of spinal curvature. Eur Spine J, 2009, 18(5): 593-607.
4. De Carvalho A, Vialle R, Thomsen L, et al. Reliability analysis for manual measurement of coronal plane deformity in adolescent scoliosis. Are 30×90 cm plain films better than digitized small films?. Eur Spine J, 2007, 16(10): 1615-1620.
5. Gstoettner M, Sekyra K, Walochnik N, et al. Inter- and intraobserver reliability assessment of the Cobb angle: manual versus digital measurement tools. Eur Spine J, 2007, 16(10): 1587-1592.
6. Gupta MC, Wijesekera S, Sossan A, et al. Reliability of radiographic parameters in neuromuscular scoliosis. Spine (Phila Pa 1976), 2007, 32(6): 691-695.
7. Allen S, Parent E, Khorasani M, et al. Validity and reliability of active shape models for the estimation of Cobb angle in patients with adolescent idiopathic scoliosis. J Digit Imaging, 2008, 21(2): 208-218.
8. Mok JM, Berven SH, Diab M, et al. Comparison of observer variation in conventional and three digital radiographic methods used in the evaluation of patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 2008, 33(6): 681-686.
9. Tanure MC, Pinheiro AP, Oliveira AS. Reliability assessment of Cobb angle measurements using manual and digital methods. Spine J, 2010, 10(9): 769-774.
10. Langensiepen S, Semler O, Sobottke R, et al. Measuring procedures to determine the Cobb angle in idiopathic scoliosis: a systematic review. Eur Spine J, 2013, 22(11): 2360-2371.
11. Hong JY, Hwang JH, Suh SW, et al. Reliability of coronal curvature measures in premature scoliosis: comparison of 4 methods using inverted digital luminescence radiography. Spine (Phila Pa 1976), 2015, 40(12): E701-E712.
12. Zhang JH, Lou E, Hill DL, et al. Computer-aided assessment of scoliosis on posteroanterior radiographs. Med Biol Eng Comput, 2010, 48(2): 185-195.
13. Aubin CE, Bellefleur C, Joncas J, et al. Reliability and accuracy analysis of a new semiautomatic radiographic measurement software in adult scoliosis. Spine (Phila Pa 1976), 2011, 36(12): E780-E790.
14. Chan AC, Morrison DG, Nguyen DV, et al. Intra- and interobserver reliability of the Cobb angle-vertebral rotation Angle-Spinous process angle for adolescent idiopathic scoliosis. Spine Deform, 2014, 2(3): 168-175.
15. Boyer L, Shen J, Parent S, et al. Accuracy and precision of seven radiography-based measurement methods of vertebral axial rotation in adolescent idiopathic scoliosis. Spine Deform, 2018, 6(4): 351-357.
16. Vrtovec T, Pernus F, Likar B. A review of methods for quantitative evaluation of axial vertebral rotation. Eur Spine J, 2009, 18(8): 1079-1090.
17. Padulo J, Ardigò LP. Letter to the editor concerning " vertebral rotation in adolescent idiopathic scoliosis calculated by radiograph and back surface analysis-based methods: correlation between the raimondi method and rasterstereography”. Eur Spine J, 2013, 22(10): 2336-2337.
18. Bekki H, Harimaya K, Matsumoto Y, et al. Which side-bending X-ray position is better to evaluate the preoperative curve flexibility in adolescent idiopathic scoliosis patients, supine or prone?. Asian Spine J, 2018, 12(4): 632-638.
19. Chaudry Z, Anderson JT. Curve flexibility in cerebral palsy-related neuromuscular scoliosis: does the intraoperative prone radiograph reveal more flexibility than preoperative radiographs?. Scoliosis Spinal Disord, 2017, 12: 15.
20. Samartzis D, Leung Y, Shigematsu H, et al. Selection of fusion levels using the fulcrum bending radiograph for the management of adolescent idiopathic scoliosis patients with alternate level pedicle screw strategy: clinical decision-making and outcomes. PLoS One, 2015, 10(8): e0120302.
21. Hu P, Yu M, Liu X, et al. Analysis of the relationship between coronal and sagittal deformities in adolescent idiopathic scoliosis. Eur Spine J, 2016, 25(2): 409-416.
22. Newton PO, Fujimori T, Doan J, et al. Defining the "Three-Dimensional sagittal plane" in thoracic adolescent idiopathic scoliosis. J Bone Joint Surg Am, 2015, 97(20): 1694-1701.
23. Yang JH, Bhandarkar AW, Suh SW, et al. Evaluation of accuracy of plain radiography in determining the Risser stage and identification of common sources of errors. J Orthop Surg Res, 2014, 9: 101.
24. Law M, Ma WK, Lau D, et al. Cumulative radiation exposure and associated cancer risk estimates for scoliosis patients: impact of repetitive full spine radiography. Eur J Radiol, 2016, 85(3): 625-628.
25. Tauchi R, Tsuji T, Cahill PJ, et al. Reliability analysis of Cobb angle measurements of congenital scoliosis using X-ray and 3D-CT images. Eur J Orthop Surg Traumatol, 2016, 26(1): 53-57.
26. Yamato Y, Matsuyama Y. Will a low-dose biplanar radiograph become " gold standard” for three-dimensional assessment of spinal deformity in patients with adolescent idiopathic scoliosis?. J Spine Surg, 2018, 4(2): 465-466.
27. Bagheri A, Liu XC, Tassone C, et al. Reliability of three-dimensional spinal modeling of patients with idiopathic scoliosis using Eos system. Spine Deform, 2018, 6(3): 207-212.
28. Kato S, Debaud C, Zeller RD. Three-dimensional EOS analysis of apical vertebral rotation in adolescent idiopathic scoliosis. J Pediatr Orthop, 2017, 37(8): e543-e547.
29. Hirsch C, Ilharreborde B, Mazda K. Flexibility analysis in adolescent idiopathic scoliosis on side-bending images using the EOS imaging system. Orthop Traumatol Surg Res, 2016, 102(4): 495-500.
30. Rouissi J, Arvieu R, Dubory A, et al. Intra and inter-observer reliability of determining degree of pelvic obliquity in neuromuscular scoliosis using the EOS-CHAIR ® protocol. Childs Nerv Syst, 2017, 33(2): 337-341.
31. Gille O, Champain N, Benchikh-El-Fegoun A, et al. Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine (Phila Pa 1976), 2007, 32(5): 568-573.
32. Ilharreborde B, Steffen JS, Nectoux EA, et al. Angle measurement reproducibility using Eos three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine (Phila Pa 1976), 2011, 36(20): E1306-E1313.
33. Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy biplanar radiographs with Eos versus computed tomography. Spine (Phila Pa 1976), 2012, 37(16): 1391-1397.
34. Morel B, Moueddeb S, Blondiaux E, et al. Dose, image quality and spine modeling assessment of biplanar Eos micro-dose radiographs for the follow-up of in-brace adolescent idiopathic scoliosis patients. Eur Spine J, 2018, 27(5): 1082-1088.