华西医学

华西医学

组蛋白乙酰化酶 6 抑制剂 23BB 改善肌红蛋白诱导的肾小管上皮细胞内质网应激

查看全文

目的使用肌红蛋白诱导人肾小管上皮细胞(HK-2)模拟横纹肌溶解致急性肾损伤的体外模型,探讨组蛋白乙酰化酶 6(histone deacetylases 6,HDAC6)选择性抑制剂 23BB 的肾脏保护机制。方法HK-2 细胞分 5 组:空白对照组、造模组(肌红蛋白 200 μmol/L)、23BB 治疗组(肌红蛋白 200 μmol/L+23BB 1.25 nmol/L)、4-苯基丁酸治疗组(肌红蛋白 200 μmol/L+4-苯基丁酸 2.0 mmol/L)及衣霉素刺激组(肌红蛋白 200 μmol/L+23BB 1.25 nmol/L+衣霉素 25 ng/mL),采用逆转录-聚合酶链反应和蛋白质印迹法检测内质网应激相关基因和蛋白情况,包括糖调节蛋白 78(glucose regulated protein 78,GRP78)、内质网源性转录因子(C/EBP homology protein,CHOP)、肌醇必需酶 1(inositol-requiring enzyme 1,IRE1)、蛋白激酶样内质网激酶(PKR-like ER kinase,PERK)和活化转录因子 6。结果23BB 改善肌红蛋白刺激下的细胞生存率(造模组 48.1% vs. 23BB 治疗组 79.3%)。在肌红蛋白诱导 HK-2 细胞模型中,23BB 显著抑制内质网应激相关的 GRP78CHOPIRE1PERK mRNA 及 GRP78、CHOP 蛋白表达水平。结论HDAC6 抑制剂 23BB 通过抑制 HK-2 细胞内质网应激,达到急性肾损伤的保护作用。

ObjectiveTo investigate the protective effects and mechanism of selective histone deacetylases 6 (HDAC6) inhibitor 23BB in myoglobin-induced proximal tubular cell lines (HK-2).MethodsHK-2 cells were divided into 5 groups, including control group, myoglobin (200 μmol/L) group, myoglobin (200 μmol/L)+23BB (1.25 nmol/L) group, myoglobin (200 μmol/L)+4-phenylbutyric acid (2 mmol/L) group, and myoglobin (200 μmol/L)+23BB (1.25 nmol/L)+tunicamycin (25 ng/mL) group. Cells were collected at 24 hours after treatment. The endoplasmic reticulum (ER) stress-related gene mRNA level and marker protein expression were evaluated by RT-PCR and Western blotting, including glucose regulated protein 78 (GRP78), C/EBP homology protein (CHOP), inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6.ResultsIn in vitro study, ER stress-related mRNA of GRP78, IRE1α, PERK, and CHOP and marker protein expression of GRP78 and CHOP were found to increase in response to myoglobin treatment. Either administration of 23BB or 4-PBA could alleviate myoglobin-induced these changes.ConclusionThe protective effect of HDAC6 inhibitor 23BB is through the inhibition of myoglobin-induced ER stress in HK-2 cells.

关键词: 横纹肌溶解致急性肾损伤; 肌红蛋白; 组蛋白乙酰化酶 6 抑制剂; 小管上皮细胞; 内质网应激

Key words: Rhabdomyolysis-induced acute kidney injury; Myoglobin; Histone deacetylases 6 inhibitor; Tubular epithelial cells; Endoplasmic reticulum stress

引用本文: 林琳, 郭帆, 马良, 冯宇颖, 杨壮. 组蛋白乙酰化酶 6 抑制剂 23BB 改善肌红蛋白诱导的肾小管上皮细胞内质网应激. 华西医学, 2018, 33(7): 881-886. doi: 10.7507/1002-0179.201806101 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. New Eng J Med, 2009, 361(1): 62-72.
2. Raymond V, Sukriu SM, Ekrem E, et al. Rhabdomyolysis. J Amer Soc Nephrol. 2000, 11(8): 1553-1561.
3. Graham DJ, Staffa JA, Shatin D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA, 2004, 292(21): 2585-2590.
4. Mcmahon GM, Zeng XX, Waikar SS. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern Med, 2013, 173(19): 1821-1828.
5. Petejova N, Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. Crit Care, 2014, 18(3): 224.
6. 张雪梅, 唐怡, 杨莹莹, 等. 肌红蛋白诱导的内质网应激及细胞凋亡在挤压综合征中的机制初探. 四川大学学报: 医学版, 2014, 46(1): 22-26.
7. Shi Y, Xu L, Tang J, et al. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury. Am J Physiol Renal Physiol, 2017, 312(3): F502-F515.
8. Tang JH, Yan YL, Zhao TC, et al. Class I HDAC activity is required for renal protection and regeneration after acute kidney injury. Am J Physiol Renal Physiol, 2014, 307(3): F303-F316.
9. Yang Z, Wang TJ, Wang F, et al. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer. J Med Chem, 2016, 59(4, SI): 1455-1470.
10. Feng Y, Huang R, Guo F, et al. Selective histone deacetylase 6 inhibitor 23BB alleviated rhabdomyolysis-induced acute kidney injury by regulating endoplasmic reticulum stress and apoptosis. Front Pharmacol, 2018, 9: 274.
11. Huerta-Alardín AL, Varon J, Marik PE. Bench-to-bedside review: rhabdomyolysis--an overview for clinicians. Crit Care, 2005, 9(2): 158-169.
12. Holt S, Moore K. Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp Nephrol, 2000, 8(2): 72-76.
13. Boutaud O, Roberts LJ 2nd. Mechanism-based therapeutic approaches to rhabdomyolysis-induced renal failure. Free Radic Biol Med, 2011, 51(5, SI): 1062-1067.
14. Panizo N, Rubio-Navarro A, Manuel Amaro-Villalobos J, et al. Molecular mechanisms and novel therapeutic approaches to rhabdo-myolysis-induced acute kidney injury. Kidney Blood Press Res, 2015, 40(5): 520-532.
15. Zhou J, Kong D, Zhang X, et al. Myoglobin-induced apoptosis: two pathways related to endoplasmic reticulum stress. Ther Apher Dial, 2012, 16(3): 272-280.
16. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature, 2002, 417(6887): 455-458.