华西医学

华西医学

使用六维眼球跟踪系统的飞秒激光辅助前弹力层下角膜磨镶术矫正近视和散光的疗效分析

查看全文

目的评价飞秒激光辅助前弹力层下角膜磨镶术(femtosecond laser-assisted sub-Bowman keratomileusis,FS-SBK)中使用六维眼球跟踪系统矫正近视及散光的有效性。 方法回顾性分析 2016 年 3 月—11 月行 FS-SBK 的屈光不正患者 23 例(36 只眼),根据术中是否行静态眼球自旋跟踪功能(static cyclotorsion control,SCC)分为 2 组,其中 SCC 组 11 例(20 只眼),非 SCC 组 12 例(16 只眼); SCC 组内再根据术中静态眼球旋转度数分为 ±2° 以内组(5 例 9 只眼)、±2~±5° 组(4 例 7 只眼)、±5° 以上组(2 例 4 只眼)3 组。分别采集患者术前、术后 1 个月的裸眼视力、最佳矫正视力、球镜度数、柱镜度数、角膜曲率和术中 SCC 度数,提取瞳孔直径为 6.5 mm 时的总高阶像差、球差、彗差、斯特尔比率等的均方根值,并观察治疗的有效性。 结果所有研究对象未出现术中及术后的严重并发症。SCC 组与非 SCC 组有效性指数差异无统计学意义(0.947±0.145、1.005±0.141,P>0.05)。两组患者术后术眼的裸眼视力均较术前明显提高,球镜度数、柱镜度数、角膜曲率差值较术前降低,总高阶像差、球差、彗差较术前增加,差异均有统计学意义(P<0.05)。在 SCC 组内,术后斯特尔比率与术前的差异有统计学意义(P<0.05)。术后各指标两组间差异均无统计学意义(P>0.05)。术前术后彗差的差值在 SCC 组与非 SCC 组差异有统计学意义(P<0.05)。在 SCC 组内不同眼球旋转度数组间,各指标术前术后差值的差异均无统计学意义(P>0.05)。 结论使用六维眼球跟踪系统的 FS-SBK 矫正近视及散光有效。FS-SBK 在减少低阶像差的同时会引入高阶像差,术中是否行 SCC 对此无明显影响。

ObjectiveTo evaluate the effectiveness of using a six-dimensional eye-tracking system during femtosecond laser-assisted sub-Bowman keratomileusis (FS-SBK) surgery to correct myopia and astigmatism. MethodsA total of 23 patients (36 eyes) with ametropia undergoing FS-SBK were retrospectively analyzed and divided into the static cyclotorsion control (SCC) group (11 patients, 20 eyes) and the non-SCC group (12 patients, 16 eyes). According to the static eyeball rotation degrees, the SCC group was further divided into three subgroups: within ±2° group (5 patients, 9 eyes), ±2°-±5° group (4 patients, 7 eyes), and above ±5° group (2 patients, 4 eyes). The preoprative and postoperative one-month uncorrected visual acuity, best corrected visual acuity, diopter of spherical power, diopter of cylindrical power, corneal curvature, and the rotating degree in SCC were observed; the root-mean-square values of the total higher-order aberrations, spherical aberration, coma, Strehl ratio, etc. when the pupil diameter was 6.5 mm were extracted; and the therapeutic efficacy was observed. ResultsNo severe intraoperative or postoperative complications occurred in any subject. The effectiveness index of the SCC group was 0.947±0.145, and that of the non-SCC group was 1.005±0.141, with no statistically significant difference (P>0.05). Compared with the preoperative levels, in the two groups, the postoperative uncorrected visual acuity was significantly elevated; the postoperative diopter of spherical power, diopter of cylindrical power, and corneal curvature difference were reduced; the postoperative total higher-order aberrations, spherical aberration, and coma increased; all the differences mentioned above were statistically significant (P<0.05). In the SCC group, the difference between the preoperative and the postoperative Strehl ratio was statistically significant (P<0.05). There was no significant difference in postoperative indicators between the SCC group and the non-SCC group (P>0.05). The difference in postoperative increment of coma between the SCC group and the non-SCC group was statistically significant (P<0.05). In the SCC group, no statistically significant difference was found in postoperative increment of any indicator among the three subgroups (P<0.05). ConclusionsFS-SBK of six-dimensional eye-tracking system is effective in correcting myopia and astigmatism. FS-SBK can reduce lower-order aberrations while introducing higher-order aberrations, and whether SCC is performed intraoperatively is meaningless.

关键词: 近视; 散光; 静态眼球自旋跟踪功能; 实时动态眼球自旋跟踪功能; 飞秒激光辅助前弹力层下角膜磨镶术; 总高阶像差; 斯特尔比率

Key words: Myopia; Astigmatism; Static cyclotosrion component; Dynamic cyclotorsion control; Femtosecond laser-assisted sub-Bowman keratomileusis; Total higher-order aberrations; Strehl ratio

引用本文: 郑琼芹, 邓应平. 使用六维眼球跟踪系统的飞秒激光辅助前弹力层下角膜磨镶术矫正近视和散光的疗效分析. 华西医学, 2018, 33(11): 1376-1381. doi: 10.7507/1002-0179.201806175 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 刘建国, 叶璐, 万雅群, 等. 虹膜定位联合波前像差引导 LASIK 与常规 LASIK 矫正重度散光的疗效对比分析. 中国激光医学杂志, 2010, 19(6): 388.
2. Porter J, Yoon G, MacRae S, et al. Surgeon offsets and dynamic eye movements in laser refractive surgery. J Cataract Refract Surg, 2005, 31(11): 2058-2066.
3. Tomita M, Watabe M, Yukawa S, et al. Supplementary effect of static cyclotorsion compensation with dynamic cyclotorsion compensation on the refractive and visual outcomes of laser in situ keratomileusis for myopic astigmatism. J Cataract Refract Surg, 2013, 39(5): 752-758.
4. Chernyak DA. Iris-based cyclotorsional image alignment method for wavefront registration. IEEE Trans Biomed Eng, 2005, 52(12): 2032-2040.
5. Wu HK. Astigmatism and LASIK. Curr Opin Ophthalmol, 2002, 13(4): 250-255.
6. Bará S, Mancebo T, Moreno-Barriuso E. Positioning tolerances for phase plates compensating aberrations of the human eye. Appl Opt, 2000, 39(19): 3413-3420.
7. Guirao A, Williams DR, Cox IG. Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations. J Opt Soc Am A Opt Image Sci Vis, 2001, 18(5): 1003-1015.
8. Tevens JD. Astigumfic axcimer laser treatment: theoretical effects of axis misaligument. Eur J Implant Ref Surg, 1994, 6: 310-318.
9. Swami AU, Steinert RF, Osborne WE, et al. Rotational malposition during laser in situ keratomileusis. Am J Ophthalmol, 2002, 133(4): 561-562.
10. Smith EM Jr, Talamo JH. Cyclotorsion in the seated and supine patient. J Cataract Refract Surg, 1995, 21(4): 402-403.
11. Hori-Komai Y, Sakai C, Toda I, et al. Detection of cyclotorsional rotation during excimer laser ablation in LASIK. J Refract Surg, 2007, 23(9): 911-915.
12. Chang J. Cyclotorsion during laser in situ kertomileusis. J Cataract Refract Surg, 2008, 34(11): 1720-1726.
13. Porter J, Yoon G, Macrae S, et al. Surgeon offsets and dynamic eye movements in laser refractive surgery. J Cataract Refract Surg, 2005, 31(11): 2058-2066.
14. Ciccio AE, Durrie DS, Stahl JE, et al. Ocular cyclotorsion during customized laser ablation. J Refract Surg, 2005, 21(6): S772-S774.
15. 顾国贞, 吕雪漫, 曲新, 等. 1038 眼 LASIK 术中应用虹膜定位技术校正眼球旋转及瞳孔中心移位的研究. 中国实用眼科杂志, 2007, 25(9): 964-967.
16. Seider MI, Ide T, Kymionis GD, et al. Epithelial breakthrough during IntraLase flap creation for laser in situ keratomileusis. J Cataract Refract Surg, 2008, 34(5): 859-863.
17. Chernyak DA. Cyclotorsional eye motion occurring between wavefront measurement and refractive surgery. J Cataract Refract Surg, 2004, 30(3): 633-638.
18. Swami AU, Steinert RE. Osbone WE, et al Rotational malpostion during laser in situ keratomileusis. Ophthalmol, 2002, 133(4): 561-562.
19. Chernyak DA. From wavefront device to laser: an alignment method for complete registration of the ablation to the cornea. J Refract Surg, 2005, 21(5): 463-468.
20. Harris WF. Astigmatism. Opthalmic Physiol Opt, 2000, 20(1): 11-30.
21. Srinivasan S, Rootman DS. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK. J Refract Surg, 2007, 23(8): 828-830.
22. Ustundag C, Bahcecioglu H, Ozdamar A, et al. Optical coherence tomography for evaluation of anatomical changes in the cornea after laser in situ keratomileusis. J Cataract Refract Surg, 2000, 26(10): 1458-1462.
23. Pallikaris IG, Kymionis GD, Panagopoulou SI, et al. Induced optical aberrations following formation of a laser in situ keratomileusis flap. J Cataract Refract Surg, 2002, 28(10): 1737-1741.
24. Applegate RA, Sarver EJ, Khemsara V. Are all aberrations equal. J Refract Surg, 2002, 18(5): S556-S562.
25. Mrochen M, Kaemmerer M, Mierdel P, et al. Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration. J Cataract Refract Surg, 2001, 27(3): 362-369.