华西医学

华西医学

脑病康复新模式:从治疗肢体到脑-肢体协同调控

查看全文

脑部疾病是神经康复的主要病种,近 30 年来脑科学的研究成果为脑部疾病康复带来了新的希望,脑部疾病康复策略正在从最初以肢体为靶器官康复(如神经发育疗法、功能性电刺激、功能性踏车、机器人等),逐渐过渡到以脑部为靶器官康复(如非侵入性脑刺激技术、虚拟现实训练等)。目前正在形成一种新的脑部疾患的康复模式,即将脑和肢体作为共同的靶器官,利用各种有效的治疗手段,通过同时或有序的不同时间组合,实现脑和肢体的协同调控,提高整体的脑病康复效果。

Subjects with brain diseases are the major conditions of neurorehabilitation. It has brought new hopes to those with neurologic problems with the development of researches in the brain and other neurology. Strategies in the neurorehabilitation are now changing. It has progressed from focusing the improvement of the limbs of patients such as neurodevelopment approaches, functional electrical stimulation, robotic training, and so on, to the brain-orientated such as non-invasive brain stimulation, virtue reality, etc. A new model of neurorehabilitation is now being developed which integrates the methods stimulating the brain with those stimulating the limbs together either simultaneously or combination to modulate the effectiveness of different modalities. The final goals are to further enhance the outcome of rehabilitation.

关键词: 脑部疾病; 康复治疗技术; 非侵入性脑刺激技术; 协同调控

Key words: Brain diseases; Rehabilitation modalities; Non-invasive brain stimulations; Integrated modulation

引用本文: 燕铁斌. 脑病康复新模式:从治疗肢体到脑-肢体协同调控. 华西医学, 2018, 33(10): 1201-1206. doi: 10.7507/1002-0179.201807017 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci, 1994, 10(9): 51-52.
2. Butz M, Wörgötter F, van Ooyen A. Activity-dependent structural plasticity. Brain Res Rev, 2009, 60(2): 287-305.
3. Lane E. Will brain stimulation technology lead to " neuroenhancement”. Science, 2013, 342(6157): 438.
4. Benabid AL. Neuroscience: spotlight on deep-brain stimulation. Nature, 2015, 519(7543): 299-300.
5. 燕铁斌. 脑-肢协同调控康复治疗方法: 201710580330.6. 2017-07-17.
6. 燕铁斌. 神经康复治疗技术发展的新趋势. 康复学报, 2017, 27(1): 2-5.
7. 燕铁斌. 物理治疗学. 3 版. 北京: 人民卫生出版社, 2018: 1259-1261.
8. 燕铁斌. 实用瘫痪康复. 2 版. 北京: 人民卫生出版社, 2010: 298-300.
9. Liberson WT, Holmquest HJ, Scot D, et al. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Am J Phys Med Rehabil, 1961, 42(8): 101-105.
10. Rebersek S, Vodovnik L. Proportionally controlled functional electrical stimulation of hand. Arch Phys Med Rehabil, 1973, 54(8): 378-382.
11. Janssen TW, Beltman JM, Elich P, et al. Effects of electric stimulation-assisted cycling training in people with chronic stroke. Arch Phys Med Rehabil, 2008, 89(3): 463-469.
12. Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation--a clinical review. J Rehabil Res Dev, 1999, 36(3): 237-251.
13. Krebs HI, Palazzolo JJ, Dipietro L, et al. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots, 2003, 15(1): 7-20.
14. Mayston MB. Bobath and NeuroDevelopmental Therapy: what is the future? . Dev Med Child Neurol, 2016, 58(10): 994.
15. Yan T, Hui-Chan CWY, Li SY. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke. Stroke, 2005, 36(1): 80-85.
16. Guger C, Allison B, Cao F, et al. A brain-computer interface for motor rehabilitation with functional electrical stimulation and virtual reality. Arch Phys Med Rehabil, 2017, 98(10): e24-e29.
17. 燕铁斌, 程曙光. 基于行走模式的低频脉冲电刺激瘫痪治疗仪. 中国医疗器械信息, 2010, 16(2): 1-4.
18. Tan Z, Liu H, Yan T, et al. The effectiveness of functional electrical stimulation based on a normal gait pattern on subjects with early stroke: a randomized controlled trial. Biomed Res Int, 2014, 2014: 545408.
19. 谭志梅, 姜文文, 燕铁斌, 等. 基于正常行走模式的功能性电刺激对脑卒中恢复期患者行走功能的影响. 中华医学杂志, 2016, 96(29): 2342-2346.
20. Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA, 2006, 296(17): 2095-2104.
21. 毕胜, 瓮长水, 张富洪, 等. 强制性使用运动疗法在慢性脑卒中下肢康复中的应用. 中国康复医学杂志, 2003, 18(3): 187-188.
22. Blanton S, Wolf SL. An application of upper-extremity constraint-induced movement therapy in a patient with subacute stroke. Phys Ther, 1999, 79(9): 847-853.
23. 曹明辉, 燕军, 燕铁斌, 等. MOTOmed 不同模式运动训练对青年志愿者体感诱发电位的影响. 中华物理医学与康复杂志, 2010, 32(4): 270-272.
24. Burtin C, Clerckx B, Robbeets CA, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med, 2009, 37(9): 2499-2505.
25. Ambrosini E, Ferrante S, Pedrocchi A, et al. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial. Stroke, 2011, 42(4): 1068-1073.
26. Chisholmk KJ, KlumperA, Mullins M, et al. A task oriented haptic gait rehabilitation robot. Mechatronics, 2014, 24(8): 1083-1091.
27. Tefertiller C, Pharo B, Evans N, et al. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev, 2011, 48(4): 387-416.
28. Esclarín-Ruz A, Alcobendas-Maestro M, Casado-Lopez R, et al. A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial. Arch Phys Med Rehabil, 2014, 95(6): 1023-1031.
29. Maggioni S, Melendez-Calderon A, van Asseldonk E, et al. Robot-aided assessment of lower extremity functions: a review. J Neuroeng Rehabil, 2016, 13(1): 72-97.
30. 王宏图. 虚拟现实技术在脑卒中运动康复中的应用现状. 中国康复理论与实践, 2014(10): 911-915.
31. 李宏伟, 张韬, 冯垚娟, 等. 外骨骼下肢康复机器人在脑卒中康复中的应用进展. 中国康复理论与实践, 2017, 23(7): 788-791.
32. Di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol, 2014, 10(10): 597-608.
33. Grossman N, Bono D, Dedic N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 2017, 169(6): 1029-1041.e16.
34. Lefaucheur JP, Andre-Obadia N, Antal AA, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol, 2014, 125(11): 2150-2206.
35. 燕铁斌. 经颅磁刺激的临床应用研究及前景展望. 中华物理医学与康复杂志, 2012, 34(12): 881-882.
36. Yavari F, Jamil A, Mosayebi Samani M, et al. Basic and functional effects of transcranial electrical stimulation (tES): an introduction. Neurosci Biobehav Rev, 2018, 85: 81-92.
37. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet, 1985, 1(8437): 1106-1107.
38. 殷稚飞, 詹玉明, 戴文骏, 等. 重复经颅磁刺激调控运动皮质兴奋性的影响因素分析. 中华物理医学与康复杂志, 2014, 36(2): 144-146.
39. Rossi S, Hallett M, Rossini PM, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol, 2009, 120(12): 2008-2039.
40. 杨远滨, 肖娜, 李梦瑶, 等. 经颅磁刺激与经颅直流电刺激的比较. 中国康复理论与实践, 2011, 17(12): 1131-1135.
41. Brunoni AR, Moffa AH, Sampaio-Junior B, et al. Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med, 2017, 376(26): 2523-2533.
42. Kang N, Summers JJ, Cauraugh JH. Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry, 2016, 87(4): 345-355.
43. Howard MC. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Com Human Behav, 2017(70): 317-327.
44. Kenyon RV, Leigh J, Keshner EA. Considerations for the future development of virtual technology as a rehabilitation tool. J Neuroeng Rehabil, 2004, 1(1): 13.