华西医学

华西医学

基于人工智能策略优化结核病诊断

查看全文

结核病是严重危害人类健康的重大传染病之一,自 2014 年开始已超过人类免疫缺陷病毒感染/获得性免疫缺陷综合征位居由单一病原引起患者死亡的传染病之首。我国是全球第三大结核病高负担国家,2016 年新发结核病例约为 90 万人。我国面临着严峻的结核疫情,尤其对于结核病的早期诊断和疑难结核病误诊漏诊更导致治疗的延迟和结核病的传播。随着人工智能在医学领域的应用,机器学习和深度学习方法在结核病的诊断中体现了重要价值。该文阐述了机器学习和深度学习在结核病诊断中的应用现状和未来的发展方向。

Tuberculosis is one of the major infectious diseases that seriously endanger human health. Since 2014, it has surpassed human immunodeficiency virus/acquired immunodeficiency syndrome as the first infectious disease in patients with single pathogens. China is the third-largest country in the world in terms of high burden of tuberculosis. In 2016, there were about 900 000 new cases of tuberculosis in China. China is facing a severe tuberculosis epidemic, especially for the early diagnosis of tuberculosis and misdiagnosis of tuberculosis, which leads to delay in treatment and the spread of tuberculosis. With the application of artificial intelligence in the medical field, machine learning and deep learning methods have shown important value in the diagnosis of tuberculosis. This article will explain the application status and future development of machine learning and deep learning in the diagnosis of tuberculosis.

关键词: 人工智能; 机器学习; 深度学习; 结核病; 诊断

Key words: Artificial intelligence; Machine learning; Deep learning; Tuberculosis; Diagnosis

引用本文: 焦琳, 胡雪姣, 应斌武. 基于人工智能策略优化结核病诊断. 华西医学, 2018, 33(8): 935-938. doi: 10.7507/1002-0179.201807067 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. World Health Organization. Global tuberculosis report 2017: WHO/HTM/TB/2017.23. Geneva: World Health Organization, 2017. http://www.who.int/tb/publications/global_report/en/.
2. Deo RC. Machine learning in medicine. Circulation, 2015, 132(20): 1920-1930.
3. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507.
4. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
5. Agranoff D, Fernandez-Reyes D, Papadopoulos MC, et al. Identification of diagnostic marers for tuberculosis by proteomic fingerprinting of serum. Lancet, 2006, 368(9540): 1012-1021.
6. 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础学组和临床学组. 现阶段结核抗体检测在我国临床应用的专家共识. 中国防痨杂志, 2018, 40(1): 9-13.
7. 全国第五次结核病抽样调查技术指导组. 2010 年全国第五次结核病流行病学抽样调查报告. 中国防痨杂志, 2012, 34(8): 485-508.
8. Wilkinson RJ, Rohlwink U, Misra UK, et al. Tuberculous meningitis. Nat Rev Neurol, 2017, 13(10): 581-598.
9. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118.
10. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22): 2402-2410.
11. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 2017, 284(2): 574-582.
12. Becker AS, Blüthgen C, Phi Van VD, et al. Detection of tuberculosis patterns in digital photographs of chest X-ray images using deep learning: feasibility study. Int J Tuberc Lung Dis, 2018, 22(3): 328-335.
13. Gao XW, Qian Y. Prediction of multidrug-resistant TB from ct pulmonary images based on deep learning techniques. Mol Pharm, 2018.
14. Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(135): 2312-2322.
15. Berry MP, Graham CM, Mcnab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(739): 973-977.
16. Yang Y, Niehaus KE, Walker TM, et al. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics, 2018, 34(10): 1666-1671.
17. Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res, 2018, 24(6): 1248-1259.