华西医学

华西医学

活动性肺结核患者外周血中长链非编码 RNA lnc-PAPSS2-2 的表达及其诊断价值的探究

查看全文

目的评价长链非编码 RNA lnc-PAPSS2-2(lnc-PA)在活动性肺结核患者外周血中的表达情况及其对活动性肺结核的诊断价值。方法收集 2011 年 1 月—2018 年 1 月于四川大学华西医院就诊的活动性肺结核患者 798 例、健康体检者 1 650 例及所有研究对象的电子病历(electronic health record,EHR)资料(年龄、性别、血常规及免疫学指标等)。采用实时荧光定量聚合酶链反应方法检测 lnc-PA 表达水平。进一步结合 EHR 进行分析并利用列线图模型评价 lnc-PA 对活动性肺结核的诊断价值。结果活动性肺结核患者全血中 lnc-PA 的表达水平显著低于健康对照(P<0.001)。列线图模型详细分析了 lnc-PA、EHR 以及两者联合的诊断效能,训练集受试者工作特征曲线(receiver operating characteristic curve,ROC 曲线)下面积依次为 0.619、0.962 和 0.964,验证集 ROC 曲线下面积依次为 0.626、0.950 和 0.950。结论lnc-PA 诊断活动性肺结核价值较差,EHR 诊断能力较好,提示 lnc-PA 作为活动性肺结核生物标志物的临床应用价值有待于进一步探索。

ObjectiveTo evaluate the expression level and diagnostic value of lnc-PAPSS2-2 (lnc-PA) in peripheral blood of active pulmonary tuberculosis (PTB) patients.MethodsFrom January 2011 to January 2018, 798 patients with active PTB and 1 650 healthy people undergoing health examination in West China Hospital of Sichuan University and their electronic health records (EHR) were collected. Peripheral blood lnc-PA levels were quantified by quantitative real-time polymerase chain reaction method. The data of lnc-PA and EHR were modeled using nomogram, and the receiver operating characteristic (ROC) curves of lnc-PA, EHR and the combination of lnc-PA and EHR were compared to evaluate the diagnostic value of lnc-PA for active PTB.ResultsThe level of lnc-PA was lower in active PTB patients than that in healthy controls (P<0.001). The areas under ROC curve of lnc-PA, EHR and their combination were 0.619, 0.962, and 0.964 in the training set and 0.626, 0.950, and 0.950 in the validation set, respectively.ConclusionThe diagnostic ability of lnc-PA is poor and that of EHR is good, which indicates that the clinical value of lnc-PA as a biomarker of active PTB remains to be further explored.

关键词: 肺结核; 长链非编码 RNA; lnc-PAPSS2-2; 诊断

Key words: Pulmonary tuberculosis; Long non-coding RNA; Lnc-PAPSS2-2; Diagnosis

引用本文: 宋佳佳, 白梦鸽, 刘堂喻亨, 胡雪姣, 赵珍珍, 彭武, 白浩, 吴茜, 应斌武. 活动性肺结核患者外周血中长链非编码 RNA lnc-PAPSS2-2 的表达及其诊断价值的探究. 华西医学, 2018, 33(8): 953-957. doi: 10.7507/1002-0179.201807068 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. World Health Organization. Global tuberculosis report 2017. (2017-02-18)[2018-08-04] . http://www.who.int/tb/publications/ global_report/en/.
2. Hu Y, Hoffner S, Wu L, et al. Prevalence and genetic characterization of second-line drug-resistant and extensively drug-resistant Mycobacterium tuberculosis in rural China. Antimicob Agents Chemother, 2013, 57(8): 3857-3863.
3. 李文文, 冯喜英, 关巍. 结核病诊断与治疗的研究进展. 中华肺部疾病杂志: 电子版, 2016, 9(2): 204-206.
4. Huarte M. The emerging role of lncRNAs in cancer. Nat Med, 2015, 21(11): 1253-1261.
5. Yang X, Yang J, Wang J, et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep, 2016, 6: 38963.
6. Sabir N, Hussain T, Shah SZA, et al. miRNAs in tuberculosis: new avenues for diagnosis and host-directed therapy. Front Microbiol, 2018, 9: 602.
7. Carpenter S, Fitzgerald KA. Transcription of inflammatory genes: long noncoding RNA and beyond. J Interferon Cytokine Res, 2015, 35(2): 79-88.
8. Li Z, Rana TM. Decoding the noncoding: prospective of lncRNA-mediated innate immune regulation. RNA Biol, 2014, 11(8): 979-985.
9. Fu Y, Xu X, Xue J, et al. Deregulated lncRNAs in B cells from patients with active tuberculosis. PLoS One, 2017, 12(1): e0170712.
10. He J, Ou Q, Liu C, et al. Differential expression of long non-coding RNAs in patients with tuberculosis infection. Tuberculosis (Edinb), 2017, 107: 73-79.
11. Doolan DL, Apte SH, Proietti C. Genome-based vaccine design: the promise for malaria and other infectious diseases. Int J Parasitol, 2014, 44(12): 901-913.
12. Huang G, Redelman-Sidi G, Rosen N, et al. Inhibition of mycobacterial infection by the tumor suppressor PTEN. J Biol Chem, 2012, 287(27): 23196-23202.
13. 梁璐. 预测原发性青光眼发生风险的分类回归树及列线图模型的初步建立及评估. 上海: 复旦大学, 2012.
14. Thao LTP, Heemskerk AD, Geskus RB, et al. Prognostic models for 9-month mortality in tuberculous meningitis. Clin Infect Dis, 2018, 66(4): 523-532.
15. Pontual Y, Pacheco VSS, Monteiro SP, et al. ABCB1 gene polymorphism associated with clinical factors can predict drug-resistant tuberculosis. Clin Sci (Lond), 2017, 131(15): 1831-1840.