华西医学

华西医学

环状 RNA 的结构和功能及在结核病研究中的应用初探

查看全文

环状 RNA 是以共价闭合环为特征的非编码 RNA,可通过转录调控机制影响细胞转导、蛋白质合成等生物学功能,与多种疾病的发病机制有关,是一类崭新的生物标志物。该文就环状 RNA 的来源、结构、功能、研究方法进行介绍,并初步探究了环状 RNA 在结核病研究中的应用。

Circular RNA are one kind of non-coding RNA, charactered by covalently closed rings. They can influence biological functions such as cell transduction and protein synthesis. They are associated with pathogenesis of many diseases and become a novel family of biomarkers. Now we try to introduce the origin, structure, function of circular RNA and the involved research methodology. Furthermore, we primarily discuss their application in the tuberculosis research.

关键词: 环状RNA; 结核; 生物标志物; 生物信息学

Key words: Circular RNA; Tuberculosis; Biomarker; Bioinformatics

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157.
2. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
3. Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357): eaam8526.
4. Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol, 2014, 15(7): 409.
5. Arendt T, Ueberham U, Janitz M. Non-coding transcriptome in brain aging. Aging (Albany NY), 2017, 9(9): 1943-1944.
6. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014, 56(1): 55-66.
7. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
8. Vidal AF, Sandoval GT, Magalhães L, et al. Circular RNAs as a new field in gene regulation and their implications in translational research. Epigenomics, 2016, 8(4): 551-562.
9. Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep, 2015, 10(2): 170-177.
10. Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6): 1125-1134.
11. Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev, 2014, 28(20): 2233-2247.
12. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015, 22(3): 256-264.
13. Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep, 2015, 10(1): 103-111.
14. Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving ago2-mediated cleavage of a circular antisense RNA. EMBO J, 2011, 30(21): 4414-4422.
15. Ghosal S, Das S, Sen R, et al. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet, 2013, 4: 283.
16. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA, 2014, 20(11): 1666-1670.
17. Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol, 2016, 13(1): 34-42.
18. Zhang R, Xu J, Zhao J, et al. Silencing of hsa_circ_0007534 suppresses proliferation and induces apoptosis in colorectal cancer cells. Eur Rev Med Pharmacol Sci, 2018, 22(1): 118-126.
19. Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell, 2013, 51(6): 792-806.
20. Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012, 7(2): e30733.
21. Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9(9): e1003777.
22. Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun, 2016, 7: 11215.
23. Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell, 2017, 66(1): 9-21.e7.
24. Zhuang ZG, Zhang JA, Luo HL, et al. The circular RNA of peripheral blood mononuclear cells: Hsa_circ_0005836 as a new diagnostic biomarker and therapeutic target of active pulmonary tuberculosis. Mol Immunol, 2017, 90: 264-272.
25. Qian Z, Liu H, Li M, et al. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine, 2018, 27: 18-26.
26. Huang ZK, Yao FY, Xu JQ, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem, 2018, 45(3): 1230-1240.
27. Zhang X, Zhu M, Yang R, et al. Identification and comparison of novel circular RNAs with associated co-expression and competing endogenous RNA networks in pulmonary tuberculosis. Oncotarget, 2017, 8(69): 113571-113582.
28. Wang M, Yang Y, Xu J, et al. CircRNAs as biomarkers of cancer: a meta-analysis. BMC Cancer, 2018, 18(1): 303.
29. Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res, 2008, 68(10): 3566-3572.
30. Zhao Y, Alexandrov PN, Jaber V, et al. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel), 2016, 7(12): E116.
31. Ouyang Q, Wu J, Jiang Z, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem, 2017, 42(2): 651-659.
32. Zhao Z, Li X, Jian D, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol, 2017, 54(3): 237-245.
33. Zhu X, Wang X, Wei S, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J, 2017, 284(14): 2170-2182.
34. Huang XY, Huang ZL, Xu YH, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep, 2017, 7(1): 5428.
35. López de Armentia MM, Amaya C, Colombo MI. Rab GTPases and the autophagy pathway: bacterial tagets for a suitable biogenesis and trafficking of their own vacuoles. Cells, 2016, 5(1): E11.
36. Liu Y, Cui H, Wang W, et al. Construction of circular miRNA sponges targeting miR-21 or miR-221 and demonstration of their excellent anticancer effects on malignant melanoma cells. Int J Biochem Cell Biol, 2013, 45(11): 2643-2650.