华西医学

华西医学

精准医学在结核病诊治中的应用

查看全文

精准医学是随着基因组测序技术的快速进步以及生物信息与大数据科学的交叉应用而发展起来的新型医疗模式,在结核病领域精准医学需同时关注病原菌及其宿主人体。该文重点介绍了精准医学在结核病诊断和治疗中的应用,并对我国结核病学科在精准医学研究中的不足进行了分析,最后对精准医学在结核病领域的未来发展作了展望。

Precision medicine is a novel medical modality based on genome sequencing, bioinformatics and big data science. The studies regarding tuberculosis always concentrated on the bacteria and host in the setting of precision medicine. This review mainly introduces the application of precision medicine in the diagnosis and treatment of tuberculosis. The limits of the Chinese studies with respect to precision medicine in tuberculosis are also discussed. Moreover, the article predicates its future development.

关键词: 精准医学; 结核病; 诊断; 治疗

Key words: Precision medicine; Tuberculosis; Diagnosis; Treatment

引用本文: 刘坤, 李为民. 精准医学在结核病诊治中的应用. 华西医学, 2018, 33(8): 926-929. doi: 10.7507/1002-0179.201807078 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Fox JL. Obama catapults patient-empowered precision medicine. Nat Biotechnol, 2015, 33(4): 325.
2. 中华人民共和国国家卫生和计划生育委员会. 肺结核诊断: WS 288-2017, 2017. http://www.nhfpc.gov.cn/ewebeditor/uploadfile/2017/11/20171128164254246.pdf.
3. 中华医学会结核病学分会, 结核病病理学诊断专家共识编写组. 中国结核病病理学诊断专家共识. 中华结核和呼吸杂志, 2017, 40(6): 419-425.
4. Chakravorty S, Simmons AM, Rowneki M, et al. The new Xpert Mtb/RIF Ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio, 2017, 8(4): e00812-e00817.
5. Bhirud P, Joshi A, Hirani N, et al. Rapid laboratory diagnosis of pulmonary tuberculosis. Int J Mycobacteriol, 2017, 6(3): 296-301.
6. 张伟阳, 钟建平, 杨国彪, 等. LAMP和Xpert Mtb/RIF早期诊断肺结核传染源的价值比较. 温州医科大学学报, 2017(1): 61-63.
7. Nathavitharana RR, Cudahy PG, Schumacher SG, et al. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2017, 49(1): 1601075.
8. Meaza A, Kebede A, Yaregal Z, et al. Evaluation of genotype MTBDR plus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis, 2017, 17(1): 280.
9. Tang P, Wang X, Shen X, et al. Use of DNA microarray chips for the rapid detection of Mycobacterium tuberculosis resistance to rifampicin and isoniazid. Exp Ther Med, 2017, 13(5): 2332-2338.
10. Senghore M, Otu J, Witney A, et al. Whole-genome sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in Southwest Nigeria. PLoS One, 2017, 12(9): e0184510.
11. Wagh V, Urhekar A, Modi D. Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy. Tuberculosis (Edinb), 2017, 102: 24-30.
12. Cui JY, Liang HW, Pan XL, et al. Characterization of a novel panel of plasma microRNAs that discriminates between Mycobacterium tuberculosis infection and healthy individuals. PLoS One, 2017, 12(9): e0184113.
13. Verma R, Pinto SM, Patil AH, et al. Quantitative proteomic and phosphoproteomic analysis of H37Ra and H37Rv strains of Mycobacterium tuberculosis. J Proteome Res, 2017, 16(4): 1632-1645.
14. Ganmaa D, Munkhzul B, Fawzi W, et al. High-dose vitamin D3 during tuberculosis treatment in Mongolia. A randomized controlled trial. Am J Respir Crit Care Med, 2017, 196(5): 628-637.
15. Azuma J, Ohno M, Kubota R, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol, 2013, 69(5): 1091-1101.