华西医学

华西医学

CRISPR 技术:一个新型基因编辑工具所引发的革命

查看全文

作为目前最受欢迎的基因编辑工具,成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)技术正在基础生物学研究、医学、生物技术等多个领域引起一场新的变革。该文先简单介绍了 CRISPR-CRISPR 相关蛋白(CRISPR-associated protein,Cas)系统的发展历史,然后重点介绍了 CRISPR 工具箱中经典的 CRISPR-Cas9 工具、后续的 CRISPR-FnCas9/RCas9 工具以及新兴的 CRISPR-Cas13 和 CRISPR-Cas12a 工具,最后对这场技术革命背后值得思考的问题进行了评论。

As the most effective and popular gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR) technology has produced a revolution in biological fundamental research, medicine and biotechnology. In this review, we describe the history of the CRISPR-CRISPR-associated protein (Cas) systems, the tools of CRISPR-Cas9, CRISPR-FnCas9/RCas9, CRISPR-Cas13 and CRISPR-Cas12a, and then some comments we need to think about.

关键词: CRISPR-Cas 系统; 基因编辑; 脱靶效应

Key words: CRISPR-Cas system; Gene editing; Off-target effects

引用本文: 肖婧, 张宗德. CRISPR 技术:一个新型基因编辑工具所引发的革命. 华西医学, 2018, 33(8): 943-949. doi: 10.7507/1002-0179.201807080 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(696): 816-821.
2. Gasiunas G, Barrangou R, Horvath PA. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA, 2012, 109(39): E2579-E2586.
3. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide-sequence of the IAP gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia-coli, and identification of the gene-product. J Bacteriol, 1987, 169(12): 5429-5433.
4. Mojica FJ, Díez-Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol, 2000, 36(1): 244-246.
5. Jansen R, Embden JD, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43(6): 1565-1575.
6. Mojica FJ, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005, 60(2): 174-182.
7. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(Pt 3): 653-663.
8. Bolotin A, Ouinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151(8): 2551-2561.
9. Deveau H, Barrangou R, Garneau JE, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 2008, 190(4): 1390-1400.
10. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
11. Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960-964.
12. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(599): 1843-1845.
13. Hale CR, Zhao P, Olson S, et al. RNA-Guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 2009, 139(5): 945-956.
14. Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011, 471(7340): 602.
15. Sapranauskas R, Gasiunas G, Fremaux C, et al. The streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res, 2011, 39(21): 9275-9282.
16. Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464-471.
17. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
18. Mali P, Yang LH, Esvelt KM, et al. RNA-Guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
19. Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. Elife, 2013, 2: e00471.
20. Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 31(3): 230-232.
21. Bassett AR, Tibbit C, Ponting CP, et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep, 2013, 4(1): 220-228.
22. Dicarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res, 2013, 41(7): 4336-4343.
23. Friedland AE, Tzur YB, Esvelt KM, et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods, 2013, 10(8): 741-743.
24. Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 2013, 31(3): 227-229.
25. Li JF, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotianabenthamiana using guide RNA and Cas9. Nat Biotechnol, 2013, 31(8): 688-691.
26. Shen B, Zhang J, Wu H, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res, 2013, 23(5): 720-723.
27. Li DL, Qiu ZW, Shao YJ, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol, 2013, 31(8): 681-683.
28. Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4): 836-843.
29. Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380-1389.
30. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol, 2014, 32(6): 577-582.
31. Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol, 2014, 32(6): 569-576.
32. Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16(2): 142-147.
33. Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520(7546): 186-191.
34. Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481-485.
35. Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268): 84-88.
36. Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng, 2017, 1: 889-901.
37. Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176): 1247997.
38. Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935-949.
39. Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016, 351(6271): 400-403.
40. Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016, 351(6271): 403-407.
41. Tabebordbar M, Zhu K, Cheng JK, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351(6271): 407-411.
42. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell, 2015, 6(5): 363-372.
43. Kim MY, Yu KR, Kenderian SS, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell, 2018, 173(6): 1439-1453.
44. Hawksworth J, Satchwell TJ, Meinders M, et al. Enhancement of red blood cell transfusion compatibility using CRISPR-mediated erythroblast gene editing. EMBO Mol Med, 2018, 10(6): e8454.
45. Sampson TR, Saroj SD, Llewellyn AC, et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 2013, 497(7448): 254-257.
46. Price AA, Sampson TR, Ratner HK, et al. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA, 2015, 112(19): 6164-6169.
47. O’Connell MR, Oakes BL, Sternberg SH, et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 2014, 516(7530): 263-266.
48. Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299): aaf5573.
49. Liu L, Li X, Ma J, et al. The molecular architecture for RNA-Guided RNA cleavage by Cas13a. Cell, 2017, 170(4): 714-726.e10.
50. Knott GJ, East-Seletsky A, Cofsky JC, et al. Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat Struct Mol Biol, 2017, 24(10): 825-833.
51. East-Seletsky A, O’Connell Mr, Burstein D, et al. RNA Targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol Cell, 2017, 66(3): 373-383.
52. Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature, 2017, 550(7675): 280-284.
53. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336): 438-442.
54. Smargon AA, Cox DBT, Pyzocha NK, et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell, 2017, 65(4): 618-630.e7.
55. Yan WX, Chong SR, Zhang HB, et al. Cas13d is a compact RNA-Targeting type VI CRISPR effector positively modulated by a WYL-Domain-Containing accessory protein. Mol Cell, 2018, 70(2): 327-339.
56. Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell, 2018, 173(3): 665-676.e14.
57. Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cassystem. Cell, 2015, 163(3): 759-771.
58. Ungerer J, Pakrasi HB. Cpf1 is a versatile Tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep, 2016, 6: 39681-39689.
59. Jiang Y, Qian F, Yang J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun, 2017, 8: 15179.
60. Yan MY, Yan HQ, Ren GX, et al. CRISPR-Cas12a-assisted recombineeringin bacteria. Appl Environ Microbiol, 2017, 83(17): e00947-17.
61. Kim H, Kim ST, Ryu J, et al. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun, 2017, 8: 14406.
62. Tang X, Liu G, Zhou J, et al. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1(Cas12a) nucleases in rice. Genome Biol, 2018, 19(1): 84.
63. Tang X, Lowder LG, Zhang T, et al. A CRISPR-Cpf1system for efficient genome editing and transcriptional repression inplants. Nat Plants, 2017, 3: 17018.
64. Lee K, Zhang Y, Kleinstiver BP, et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J, 2018.
65. Agudelo D, Duringer A, Bozoyan L, et al. Marker-free coselection for CRISPR-driven genome editing in human cells. Nat Methods, 2017, 14(6): 615-620.
66. Chen F, Ding X, Feng Y, et al. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nat Commun, 2017, 8: 14958.
67. Li X, Wang Y, Liu Y, et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol, 2018, 36(4): 324-327.
68. Zetsche B, Heidenreich M, Mohanraju P, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol, 2017, 35(1): 31-34.
69. Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018, 360(6387): 439-444.
70. Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387): 436-439.
71. Schaefer KA, Wu WH, Colgan DF, et al. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods, 2017, 14(6): 547-548.
72. Rauch BJ, Silvis MR, Hultquist JF, et al. Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell, 2017, 168(1/2): 150-158.
73. Ihry RJ, Worringer KA, Salick MR, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med, 2018, 24(7): 939-946.