华西医学

华西医学

结核潜伏感染进展到活动性结核病的组学进展

查看全文

对潜伏结核感染(latent tuberculosis infection,LTBI)的患者进行结核风险的预测和药物干预,对于达到消灭结核病的目标具有重要作用。目前LTBI的诊断方法仍存在一定缺陷,不能预测结核感染后的发病风险。该文从基因组学、转录组学、蛋白组学及代谢组学4个方面对LTBI进展到活动性结核病的研究进展进行了全面总结,并对LTBI进展到活动性结核病的预测标签的研究方向进行了展望。

Tuberculosis risk prediction and drug intervention for latent tuberculosis infection (LTBI) patients plays an important role in achieving the goal of eliminating tuberculosis. At present, the diagnostic methods of LTBI still have some defects and cannot predict the risk of LTBI progression to active tuberculosis. In this paper, studies of LTBI advancing into tuberculosis in genomics, transcriptomics, proteomics and metabonomics have been comprehensively summarized, and the further development of markers for risk prediction is prospected.

关键词: 潜伏结核感染; 活动性结核病; 综述

Key words: Latent tuberculosis infection; Active tuberculosis; Review

引用本文: 贺建清, 张苗苗, 吴寿全. 结核潜伏感染进展到活动性结核病的组学进展. 华西医学, 2018, 33(8): 1028-1032. doi: 10.7507/1002-0179.201808022 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Barry CE 3rd, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol, 2009, 7(12): 845-855.
2. World Health Organization. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018. http://apps.who.int/iris/bitstream/handle/10665/260233/9789241550239-eng.pdf;jsessionid=B3FF14274655CFB810D114E8AC3B21C3?sequence=1.
3. Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol, 1974, 99(2): 131-138.
4. Vynnycky E, Fine PE. Lifetime risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol, 2000, 152(3): 247-263.
5. Koul A, Arnoult E, Lounis N, et al. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469(7331): 483-490.
6. Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, et al. HLA class Ⅱ sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet, 2016, 48(3): 318-322.
7. Oki NO, Motsinger-Reif AA, Antas PR, et al. Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study. BMC Res Notes, 2011, 4: 28.
8. Wu SQ, Huang WW, Wang D, et al. Evaluation of TLR2, TLR4, and TOLLIP polymorphisms for their role in tuberculosis susceptibility. APMIS, 2018, 126(6): 501-508.
9. Lu YJ, Zhu YW, Wang X, et al. FOXO3 rs12212067: T > G association with active tuberculosis in Han Chinese population. Inflammation, 2016, 39(1): 10-15.
10. Lu YJ, Li Q, Peng J, et al. Association of autophagy-related IRGM polymorphisms with latent versus active tuberculosis infection in a Chinese population. Tuberculosis (Edinb), 2016, 97: 47-51.
11. He Q, Tang K, Luo M, et al. Association between cytokine gene polymorphisms and tuberculosis in a Chinese population in Shanghai: a case-control study. J Clin Microbiol, 2015, 16: 8.
12. Yang Y, Li XW, Cui W, et al. Potential association of pulmonary tuberculosis with genetic polymorphisms of toll-like receptor 9 and interferon-gamma in a Chinese population. BMC Infect Dis, 2013, 13: 511.
13. Mekonnen E, Bekele E. An ancestral human genetic variant linked to an ancient disease: a novel association of FMO2 polymorphisms with tuberculosis (TB) in Ethiopian populations provides new insight into the differential ethno-geographic distribution of FMO2*1. PLoS One, 2017, 12(10): e0184931.
14. Hall NB, Igo J, Malone LL, et al. Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun, 2015, 16(2): 127-133.
15. Braun K, Wolfe J, Kiazyk S, et al. Evaluation of host genetics on outcome of tuberculosis infection due to differences in killer immunoglobulin-like receptor gene frequencies and haplotypes. BMC Genet, 2015, 16: 63.
16. Stagas MK, Papaetis GS, Orphanidou DA, et al. Polymorphisms of the NRAMP1 gene: distribution and susceptibility to the development of pulmonary tuberculosis in the Greek population. Med Sci Monit, 2011, 17(1): PH1-PH6.
17. Duarte R, Carvalho C, Pereira C, et al. HLA class Ⅱ alleles as markers of tuberculosis susceptibility and resistance. Rev Port Pneumol, 2011, 17(1): 15-19.
18. Dalgic N, Tekin D, Kayaalti Z, et al. Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol, 2011, 72(5): 440-445.
19. Ganachari M, Ruiz-Morales JA, Gomez de la Torre Pretell JC, et al. Joint effect of MCP-1 genotype GG and MMP-1 genotype 2G/2G increases the likelihood of developing pulmonary tuberculosis in BCG-vaccinated individuals. PLoS One, 2010, 5(1): e8881.
20. Jacobsen M, Repsilber D, Gutschmidt A, et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl), 2007, 85(6): 613-621.
21. Berry MP, Graham CM, Mcnab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(739): 973-977.
22. Lu CY, Wu J, Wang HH, et al. Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PLoS One, 2011, 6(8): e24290.
23. Maertzdorf J, Repsilber D, Parida SK, et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun, 2011, 12(1): 15-22.
24. Kaforou M, Wright VJ, Oni T, et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med, 2013, 10(10): e1001538.
25. Maertzdorf J, Mcewen G, Weiner IJ, et al. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol Med, 2016, 8(2): 86-95.
26. Sweeney TE, Braviak L, Tato CM. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016, 4(3): 213-224.
27. Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(135): 2312-2322.
28. Suliman S, Thompson EG, Sutherland J, et al. Four-gene pan-African blood signature predicts progression to tuberculosis. Am J Respir Crit Care Med, 2018, 197(9): 1198-1208.
29. De Groote MA, Higgins M, Hraha T, et al. Highly multiplexed proteomic analysis of quantiferon supernatants to identify biomarkers of latent tuberculosis infection. J Clin Microbiol, 2017, 55(2): 391-402.
30. Li JQ, Sun L, Xu F, et al. Characterization of plasma proteins in children of different Mycobacterium tuberculosis infection status using label-free quantitative proteomics. Oncotarget, 2017, 8(61): 103290-103301.
31. Sun HS, Pan LP, Jia HY, et al. Label-free quantitative proteomics identifies novel plasma biomarkers for distinguishing pulmonary tuberculosis and latent infection. Front Microbiol, 2018, 9: 1267.
32. Ji HY, Liu Y, He F, et al. LC-MS based urinary metabolomics study of the intervention effect of aloe-emodin on hyperlipidemia rats. J Pharm Biomed Anal, 2018, 156: 104-115.
33. Weiner J 3rd, Parida SK, Maertzdorf J, et al. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS One, 2012, 7(7): e40221.
34. Petruccioli E, Scriba TJ, Petrone LA, et al. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. Eur Respir J, 2016, 48(6): 1751-1763.