华西医学

华西医学

退变性腰椎侧凸六种工况运动下的生物力学的有限元分析

查看全文

目的完整建立退变性腰椎侧凸(degenerative lumbar scoliosis,DLS)全腰椎节段的三维仿真模型,并对模型进行有限元分析,探讨其侧凸节段的生物力学改变。方法选取一例 DLS 患者的 L1-5 节段 CT 平扫数据,导入 MIMICS 15、SolidWorks、HyperMesh 等软件中进行三维仿真模型的建立,并用有限元分析软件 ANSYS 15 对模型进行分析,同时对各种结构赋予不同的材料属性及边界加载条件来模拟人体实际情况。结果所建成的三维模型总计 856 154 个单元、232 850 个节点,包括精细重建的各个椎体、椎间盘组织、各种韧带以及关节突软骨等组织结构。在加载负荷和扭矩下,全腰椎节段活动范围减小,在 4 个椎间盘的应力分布情况中,呈现 L2/3 节段椎间盘(3.320 MPa)>L4/5 节段椎间盘(0.783 MPa)>L3/4 节段椎间盘(0.551 MPa)>L1/2 节段椎间盘(0.462 MPa);在椎体的应力分布情况中,L5 椎体(34.0 MPa)>L4 椎体(33.6 MPa)>L3 椎体(30.0 MPa)>L1 椎体(23.3 MPa)>L2 椎体(22.4 MPa)。结论DLS 患者腰椎六自由度活动范围下降,侧凸腰椎局部应力分布异常,顶椎体及顶椎间盘的反常应力改变可能是 DLS 发生或进展的生物力学基础。

ObjectiveTo completely establish a three-dimensional (3D) simulation model of degenerative lumbar scoliosis (DLS) with the whole lumbar segments, then to analyze the biomechanical changes of the scoliosis segments by finite element analysis.MethodsA case of DLS patient was selected with L1-5 segments of CT scanning data, which was imported into MIMICS 15, SolidWorks, Hyper-Mesh software to establish a 3D simulation model, and ANSYS 15 was used to analyze the model. At the same time, different material properties and boundary loading conditions were assigned to various structures to simulate the actual human body conditions.ResultsThe 3D model built a total of 856 154 units and 232 850 nodes, including the reconstruction of fine vertebral bodies, intervertebral disc tissue, structure of various ligaments and joint cartilages. Under the load and torque, the range of whole lumbar segments was decreased, in the stress distribution on the four discs: the L2/3 intervertebral disc stress value (3.320 MPa) > L 4/5 intervertebral disc stress value (0.783 MPa) > L 3/4 intervertebral disc stress value (0.551 MPa) > L 1/2 intervertebral disc stress value (0.462 MPa). The stress distribution of the vertebral body showed that, L5 vertebral stress (34.0 MPa) > L 4 (33.6 MPa) >L 3 (30.0 MPa) > L 1 (23.3 MPa) > L 2 (22.4 MPa).ConclusionThe range of motion of the six degrees of freedom of the lumbar spine in DLS is decreased, the local stress distribution of the lumbar spine is abnormal, and the abnormal stress changes of the apical vertebral body and the top intervertebral disc may be the biomechanical basis for the occurrence or progression of DLS.

关键词: 退变性腰椎侧凸; 全腰椎节段; 三维有限元分析; 生物力学分析

Key words: Degenerative lumbar scoliosis; Full lumbar segment; Three-dimensional finite element analysis; Biomechanical analysis

引用本文: 周仕炼, 胡星新, 杨曦, 刘立岷. 退变性腰椎侧凸六种工况运动下的生物力学的有限元分析. 华西医学, 2018, 33(9): 1099-1105. doi: 10.7507/1002-0179.201808033 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Ellwitz J, Gupta M. Adult degenerative scoliosis//Patel VV, Patel A, Harrop JS, et al. Spine Surgery Basics. Berlin, Heidelberg: Springer, 2014: 247-258.
2. Silva FE, Lenke LG. Adult degenerative scoliosis: evaluation and management. Neurosurg Focus, 2010, 28(3): E1.
3. Xu L, Sun X, Huang S, et al. Degenerative lumbar scoliosis in Chinese Han population: prevalence and relationship to age, gender, bone mineral density, and body mass index. Eur Spine J, 2013, 22(6): 1326-1331.
4. 钱宇锋, 薛峰, 盛晓文, 等. 退变性腰椎侧凸症的自然进展和影像学测量指标间相关性的研究. 颈腰痛杂志, 2013, 34(2): 98-101.
5. 闫广奎, 叶君健. 有限元分析法在腰椎生物力学研究中的应用. 中国组织工程研究, 2012, 16(22): 4117-4119.
6. 冯其金, 赵玲娟, 郑昆仑, 等. 有限元分析法在腰椎生物力学中的研究进展. 中国中西医结合外科杂志, 2018, 24(2): 255-258.
7. 赵迪. 成人退变性脊柱侧凸有限元模型的建立及后路三维矫形生物力学研究. 长沙: 中南大学, 2010.
8. 郑杰, 杨永宏, 楼肃亮, 等. 退变性脊柱侧弯的生物力学有限元分析. 中国组织工程研究, 2013, 17(30): 5490-5496.
9. Kim HJ, Chun HJ, Kang KT, et al. A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis. Med Biol Eng Comput, 2009, 47(6): 599-605.
10. Wang X, Dumas GA. Evaluation of effects of selected factors on inter-vertebral fusion-a simulation study. Med Eng Phys, 2005, 27(3): 197-207.
11. Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys, 2001, 23(7): 483-491.
12. Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine (Phila Pa 1976), 1996, 21(22): 2570-2579.
13. Polikeit A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J, 2003, 12(4): 413-420.
14. 钱忠来, 唐天驷. 腰椎椎间盘三维有限元分析. 苏州大学学报: 医学版, 2002, 22(1): 4-7.
15. Belytschko T, Kulak RF, Schultz AB, et al. Finite element stress analysis of an intervertebral disc. J Biomech, 1974, 7(3): 277-285.
16. Zhu R, Niu WX. The effect of muscle direction on the predictions of finite element model of human lumbar spine. Biomed Res Int, 2018, 2018(58): 1-6.
17. McNally DS, Adams MA. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine (Phila Pa 1976), 1991, 17(1): 66-73.
18. Rmeir A, Fairbank JC, Deborah AJ, et al. High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis, 2007, 2(4): 1-16.
19. Daffner SD, Vaccaro AR. Adult degenerative lumbar scoliosis. Am J Orthop (Belle Mead NJ), 2003, 32(2): 77-82.