华西医学

华西医学

3D 打印技术在椎间融合临床应用的研究进展

查看全文

随着 3D 打印技术的发展,关于其在脊柱外科椎间融合材料方面应用的研究越来越多,其应用前景也越来越值得期待。该文结合 3D 打印技术应用于椎间融合的相关研究报道,对脊柱椎间融合领域应用的 3D 打印材料及打印技术进行总结,并对 3D 打印技术在椎间融合领域目前研究及应用中存在的不足进行了分析,最后对其未来发展作出了展望。

With the development of three-dimensional (3D) printing technology, more and more researches have focused on its application in the region of intervertebral fusion materials; the prospects are worth looking forward to. This article reviews the researches about 3D printing technology in spinal implants, and summarizes the materials and printing technology applied in the field of spinal interbody fusion, and the shortcomings in the current research and application. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal interbodies will be developed and used clinically.

关键词: 3D 打印技术; 椎间融合; 临床应用; 研究进展

Key words: Three-dimensional printing technology; Intervertebral fusion; Clinical application; Research progress

引用本文: 王林楠, 杨曦, 宋跃明. 3D 打印技术在椎间融合临床应用的研究进展. 华西医学, 2018, 33(9): 1061-1067. doi: 10.7507/1002-0179.201809010 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Cavanaugh PK, Mounts T, Vaccaro AR. Use of 3-dimensional printing in spine care. Contemp Spine Surg, 2015, 16(1): 1-5.
2. Kuehn BM. Clinicians embrace 3D printers to solve unique clinical challenges. JAMA, 2016, 315(4): 333-335.
3. 程文俊, 勘武生, 郑琼, 等. 3D 打印钛合金骨小梁金属臼杯全髋关节置换术的短期疗效. 中华骨科杂志, 2014, 34(8): 816-823.
4. 王臻, 滕勇, 李涤尘, 等. 基于快速成型的个体化人工半膝关节的研制-计算机辅助设计与制造. 中国修复重建外科杂志, 2004, 18(5): 347-351.
5. Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma. Spine (Phila Pa 1976), 2016, 41(1): E50-E54.
6. Wu SH, Li Y, Zhang YQ, et al. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs, 2013, 37(12): E191-E201.
7. Murr LE, Gaytan SM, Ramirez DA, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol, 2012, 28(1): 1-14.
8. Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6A14V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater, 2010, 3(3): 249-259.
9. Lethaus B, Poort L, Böckmann R, et al. Additive manufacturing for microvascular reconstruction of the mandible in 20 patients. J Cranio Maxill Surg, 2012, 40: 43-46.
10. Su XB, Yang YQ, Yu P, et al. Development of porous medical implant scaffolds via laser additive manufacturing. Trans Nonferrous Met Soc China, 2012, 22(Suppl 1): S181-S187.
11. 卢祺, 于滨生. 脊柱内植物的 3D 打印技术研究进展. 中国修复重建外科杂志, 2016, 30(9): 1160-1165.
12. 吴天顺, 陈扬, 蓝涛, 等. 脊柱 3D 打印椎间融合器材料的初步展望. 生物骨科材料与临床研究, 2018, 15(1): 58-63.
13. Eisenbarth E, Velten D, Müller M, et al. Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials, 2004, 25(26): 5705-5713.
14. Pattanayak DK, Fukuda A, Matsushita T, et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater, 2011, 7(3): 1398-1406.
15. Olivares-Navarrete R, Gittens RA, Schneider JM, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J, 2012, 12(3): 265-272.
16. 罗丽娟, 余森, 于振涛, 等. 3D 打印钛及钛合金医疗器械的优势及临床应用现状. 生物骨科材料与临床研究, 2015, 12(6): 72-75.
17. Castellvi AE, Castellvi A, Clabeaux DH. Corpectomy with titanium cage reconstruction in the cervical spine. J Clin Neurosci, 2012, 19(4): 517-521.
18. Song ZL, Feng CK, Chiu FY, et al. The clinical significance of rapid prototyping technique in complex spinal deformity surgery-case sharing and literature review. Formosan J Musculoskeletal Disord, 2013, 4(3): 88-93.
19. Butscher A, Bohner M, Hofmann S, et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater, 2011, 7(3): 907-920.
20. Bertollo N, Da Assuncao R, Hancock NJ, et al. Influence of electron beam melting manufactured implants on ingrowth and shear strength in an ovine model. J Arthroplasty, 2012, 27(8): 1429-1436.
21. Fukuda A, Takemoto M, Saito T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater, 2011, 7(5): 2327-2336.
22. Chen Y, Chen D, Guo Y, et al. Subsidence of titanium mesh cage: a study based on 300 cases. J Spinal Disord Tech, 2008, 21(7): 489-492.
23. Lee YS, Kim YB, Park SW. Risk factors for postoperative subsidence of single-level anterior cervical discectomy and fusion: the significance of the preoperative cervical alignment. Spine (Phila Pa 1976), 2014, 39(16): 1280-1287.
24. Jiang W, Shi J, Li W, et al. Three dimensional melt-deposition of polycaprolactone/bio-derived hydroxyapatite composite into scaffold for bone repair. J Biomater Sci Polym Ed, 2013, 24(5): 539-550.
25. 郭敏, 郑玉峰. 多孔钽材料制备及其骨科植入物临床应用现状. 中国骨科临床与基础研究杂志, 2013, 5(1): 47-54.
26. Veillette CJ, Mehdian H, Schemitsch EH, et al. Survivorship analysis and radiographic outcome following tantalum rod insertion for osteonecrosis of the femoral head. J Bone Joint Surg Am, 2006, 88(Suppl 3): 48-55.
27. Zardiackas LD, Parsell DE, Dillon LD, et al. Structure, metallurgy, and mechanical properties of a porous Tantalum foam. J Biomed Mater Res, 2001, 58(2): 180-187.
28. Aldegheri R, Taglialavoro G, Berizzi A, et al. The tantalun screw for treating femoral head necrosis: rationale and results. Strategies Trauma Limb Reconstr, 2007, 2(2/3): 63-68.
29. Malloy JP, Beutler W, Peppelman W, et al. Clinical outcomes with porous tantalum in lumbar interbody fusion. Spine J, 2010, 10(9): S147-S148.
30. 李洋. 激光增材制造(3D 打印)制备生物医用多孔金属工艺及组织性能研究. 江苏: 苏州大学, 2015.
31. Saris NE, Mervaala E, Karppanen H, et al. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta, 2000, 294(1/2): 1-26.
32. Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728-1734.
33. 许灏铖, 张帆, 吕飞舟, 等. 金属镁及其合金植入材料在脊柱外科中的应用. 国际骨科学杂志, 2016, 37(5): 269-273.
34. Simon JL, Roy TD, Parsons JR, et al. Engineered cellular response to scaffold architecture in a rabbit trephine defect. J Biomed Mater Res A, 2003, 66(2): 275-282.
35. Witte F, Reifenrath J, Müeller PP, et al. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materwiss Werksttech, 2006, 37(6): 504-508.
36. Ng CC, Savalani MM, Lau ML, et al. Microstructure and mechanical properties of selective laser melted Magnesium. Applied Surface Sci, 2011, 257(17): 7447-7454.
37. Ng CC, Savalani M, Man HC. Fabrication of magnesium using selective laser melting technique. Rapid Prototyping J, 2011, 17(6): 479-490.
38. Xu L, Zhang E, Yin D, et al. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci Mater Med, 2008, 19(3): 1017-1025.
39. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557-3563.
40. Daentzer D, Willbold E, Kalla K, et al. Bioabsorbable interbody magnesium-polymer cage: degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model. Spine (Phila Pa 1976), 2014, 39(20): E1220-E1227.
41. Dai KR, Hou XK, Sun YH, et al. Treatment of intra-articular fractures with shape memory compression staples. Injury, 1993, 24(10): 651-655.
42. Dai K, Chu Y. Studies and applications of Ni Ti shape memory alloys in the medical field in China. Biomed Mater Eng, 1996, 6(4): 233-240.
43. 蔡兴博, 丁晶, 徐永清. 镍钛记忆合金在骨科临床中的应用. 国际骨科学杂志, 2017, 38(6): 364-367.
44. 昌耘冰, 徐达传, 尹庆水, 等. 腰椎形状记忆合金椎间融合器的研制和生物力学评价. 骨与关节损伤杂志, 2004, 19(9): 610-613.
45. 杨益民, 张智, 李萌, 等. 记忆合金支架在椎体骨折中的实验研究. 中国微创外科杂志, 2014, 14(8): 751-754.
46. Yablokova G, Speirs M, Van Humbeeck J, et al. Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants. Powder Technology, 2015, 283: 199-209.
47. Cabraja M, Oezdemir S, Koeppen D, et al. Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskel Disord, 2012, 13: 172.
48. Lemcke J, Al-Zain F, Meier U, et al. Polyetheretherketone (PEEK) spacers for anterior cervical fusion: a retrospective comparative effectiveness clinical trial. Open Orthop J, 2011, 5: 348-353.
49. 郭华清, 徐冬梅. 3D 打印用高分子材料的研究进展. 工程塑料应用, 2016, 11(44): 118-121.
50. 边卫国, 张银刚, 刘亮, 等. 3D 打印聚醚醚酮人工椎板在腰椎后路椎板减压术中的初步运用. 风湿病与关节炎, 2017, 6(8): 46-47, 71.
51. 韩淑芬, 陈伟伟, 于洁. 3D 打印高分子材料研究进展. 工程塑料应用, 2017, 45(10): 146-150.
52. Tan KH, Chua CK, Leong KF, et al. Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaff olds using laser sintering. Proc Inst Mech Eng H, 2005, 219(3): 183-194.
53. Converse GL, Conrad TL, Merrill CH, et al. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds. Acta Biomater, 2010, 6(3): 856-863.
54. Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials, 2007, 28(22): 3338-3348.
55. Li J, Zuo Y, Cheng X, et al. Preparation and characterization of nano-hydroxyapatite/polyamide 66 composite GBR membrane with asymmetric porous structure. J Mater Sci Mater Med, 2009, 20(5): 1031-1038.
56. Yang X, Song Y, Liu L, et al. Anterior reconstruction with nano-hydroxyapatite/polyamide-66 cage after thoracic and lumbar corpectomy. Orthopedics, 2012, 35(1): e66-e73.
57. Yang X, Chen Q, Liu L, et al. Comparison of anterior cervical fusion by titanium mesh cage versus nano-hydroxyapatite/ polyamide cage following single-level corpectomy. Int Orthop, 2013, 37(12): 2421-2427.
58. 高晓东, 杨卫民, 迟百宏, 等. 聚酰胺 12 制品 3D 打印成型力学性能研究. 中国塑料, 2015, 29(12): 73-76.
59. 聂建华, 周志盛, 霍泽荣, 等. 弹性产品用聚酰胺树脂 3D 打印通用型粉末材料及黏结溶液的研究. 塑料工艺, 2014, 42(1): 122-130.
60. Hojo Y, Kotani Y, Ito M, et al. A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage. Biomaterials, 2005, 26(15): 2643-2651.
61. 李嵩, 祁敏, 曹鹏, 等. 可吸收脊柱椎间融合器的研究与应用进展. 脊柱外科杂志, 2014, 12(2): 103-106.
62. Lowe TG, Coe JD. Bioresorbable polymer implants in the unilateral transforaminal lumbar interbody fusion procedure. Orthopedies, 2002, 25(10 Suppl): s1179-s1183.
63. Coe JD, Vaccaro AR. Instrumented transforaminal lumbar interbody fusion with bioresorbable polymer implants and iliac crest autograft. Spine (Phila Pa 1976), 2005, 30(17 Suppl): S76-S83.
64. Inkinen S, Hakkarainen M, Albertsson AC, et al. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules, 2011, 12(3): 523-532.
65. 王成成, 李梦倩, 雷文, 等. 3D 打印聚乳酸及其复合材料的研究进展. 塑料科技, 2016, 44(6): 89-91.
66. 丛铭. 3D 打印羟基磷灰石椎间融合器及生物力学分析. 山东: 青岛大学, 2016.
67. Habibovic P, Kruyt MC, Juhl MV, et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res, 2008, 26(10): 1363-1370.
68. Habibovic P, de Groot K. Osteoinductive biomaterials: properties and relevance in bone repair. J Tissue Eng Regen Med, 2007, 1(1): 25-32.
69. Liu Y, Lim J, Teoh SH. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv, 2013, 31(5): 688-705.
70. Li X, Wang C, Zhang W, et al. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater lett, 2009, 63(3): 403-405.
71. Heinl P, Müller L, Körner C, et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater, 2008, 4(5): 1536-1544.
72. Zhou J, Lin H, Fang T, et al. The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials, 2010, 31(6): 1171-1179.
73. Zhang ZY, Teoh SH, Chong MS, et al. Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials, 2010, 31(4): 608-620.
74. Habibovic P, Yuan H, van der Valk CM, et al. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, 2005, 26(17): 3565-3575.
75. Otsuki B, Takemoto M, Fujibayashi S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials, 2006, 27(35): 5892-5900.
76. Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput, 2013, 51(3): 245-256.
77. 杨洁, 王庆顺, 关鹤. 选择性激光烧结技术原材料及技术发展研究. 黑龙江科学, 2017, 8(20): 30-33.
78. Bremen S, Meiners W, Diatlov A. Selective laser melting. Laser Technik J, 2012, 9(2): 33-38.
79. Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia, 2010, 58(9): 3303-3312.
80. 王燎, 戴尅戎. 骨科个体化治疗与 3D 打印技术. 医用生物力学, 2014, 29(3): 193-199.
81. 王宏, 赵冰净, 鄢荣曾, 等. 电子束选区熔化制备钛合金支架的生物相容性研究. 中华口腔医学杂志, 2016, 51(11): 667-672.
82. Le Guehennec L, Lopez-Heredia MA, Enkel B, et al. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater, 2008, 4(3): 535-543.
83. Svehla M, Morberg P, Zicat B, et al. Morphometric and mechanical evaluation of titanium implant integration: comparison of five surface structures. J Biomed Mater Res, 2000, 51(1): 15-22.
84. Yang J, Cai H, Lv J, et al. Biomechanical and histological evaluation of roughened surface titanium screws fabricated by electron beam melting. PLoS One, 2014, 9(4): e96179.
85. 杨志明. 加快发展 3-D 打印技术、扩展修复重建外科应用领域. 中国修复重建外科杂志, 2014, 28(3): 265.