华西医学

华西医学

显性负效应在不同类型胰岛素病发病机制中的作用

查看全文

目的探讨显性负效应在不同类型胰岛素基因突变所致糖尿病发病机制中的作用。方法分别用含有突变型前胰岛素原互补 DNA(complementary DNA,cDNA)的重组质粒和含有人野生型前胰岛素原 cDNA 的重组质粒共转染 293T 细胞,共有 V(A3)L、C(A7)Y、R(SP6)H、G(B8)S 和 G(C28)R 5 个突变组,将含有人野生型前胰岛素原 cDNA 的重组质粒与含有小鼠野生型前胰岛素原 cDNA 的重组质粒共转染作为正常对照组。转染 48 h 后收集细胞和培养液,放射免疫法检测细胞内和培养液人胰岛素原水平。结果与正常对照组[(135.84±1.89) pmol/L]相比,C(A7)Y 组[(29.28±6.85) pmol/L]和 G(B8)S 组[(33.62±10.52) pmol/L]细胞培养液中人胰岛素原水平显著降低(P<0.01),其余各组培养液中人胰岛素原水平与正常对照组相比差异无统计学意义(P>0.05)。结论突变型胰岛素原 C(A7)Y 和 G(B8)S 对共存的野生型胰岛素原产生显性负效应。

ObjectiveTo explore the action of dominant-negative effect on mutant insulin gene-induced diabetes.Methods293T cells were transfected with a recombinant plasmid containing mutant preproinsulinogen complementary DNA (cDNA) and a recombinant plasmid containing human wild-type preproinsulinogen cDNA. There were 5 mutant groups which mutant preproinsulins respectively bear substitutions V(A3)L, C(A7)Y, R(SP6)H, G(B8)S or G(C28)R. Wild-type mouse preproinsulin and wild-type human preproinsulin were co-transfected as normal control group. After 48 hours, medium and cells were collected. Human proinsulin were detected by human-specific proinsulin radioimmunoassay.ResultsCompared with the control group [(135.84±1.89) pmol/L], human proinsulin levels in medium of C(A7)Y group [(29.28±6.85) pmol/L] and G(B8)S group[(33.62±10.52) pmol/L] decreased significantly (P<0.01). There was no significant difference in human proinsulin level between the other groups and the control group (P>0.05).ConclusionMutants C(A7)Y and G(B8)S induce the dominant-negative effect on co-existing wild-type proinsulin.

关键词: 糖尿病; 显性负效应; 胰岛素; 基因突变

Key words: Diabetes; Dominant-negative effect; Insulin; Gene mutation

引用本文: 孙楠, 韩莉, 沙依拉·海米提, 崔景秋, 王新玲. 显性负效应在不同类型胰岛素病发病机制中的作用. 华西医学, 2018, 33(11): 1406-1410. doi: 10.7507/1002-0179.201809080 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Guo H, Xiong Y, Witkowski P, et al. Inefficient translocation of preproinsulin contributes to pancreatic β cell failure and late-onset diabetes. J Biol Chem, 2014, 289(23): 16290-16302.
2. Støy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA, 2007, 104(38): 15040-15044.
3. Bonfanti R, Colombo C, Nocerino V, et al. Insulin gene mutations as cause of diabetes in children negative for five type 1 diabetes autoantibodies. Diabetes Care, 2009, 32(1): 123-125.
4. Meur G, Simon A, Harun N, et al. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes, 2010, 59(3): 653-661.
5. Hodish I, Liu M, Rajpal G, et al. Misfolded proinsulin affects bystander proinsulin in neonatal diabetes. J Biol Chem, 2010, 285(1): 685-694.
6. Park SY, Ye H, Steiner DF, et al. Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. Biochem Biophys Res Commun, 2010, 391(3): 1449-1454.
7. Steiner DF, Tager HS, Chan SJ, et al. Lessons learned from molecular biology of insulin-gene mutations. Diabetes Care, 1990, 13(6): 600-609.
8. Colombo C, Porzio O, Liu M, et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest, 2008, 118(6): 2148-2156.
9. Haataja L, Manickam N, Soliman A, et al. Disulfide mispairing during proinsulin folding in the endoplasmic reticulum. Diabetes, 2016, 65(4): 1050-1060.
10. Kim YH, Kastner K, Abdul-Wahid B, et al. Evaluation of conformational changes in diabetes-associated mutation in insulin a chain: a molecular dynamics study. Proteins, 2015, 83(4): 662-669.
11. Renner S, Braun-Reichhart C, Blutke A, et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes, 2013, 62(5): 1505-1511.
12. Blutke A, Renner S, Flenkenthaler F, et al. The Munich MIDY pig biobank: a unique resource for studying organ crosstalk in diabetes. Mol Metab, 2017, 6(8): 931-940.
13. Støy J, Olsen J, Park SY, et al. In vivo measurement and biological characterisation of the diabetes-associated mutant insulin p.R46Q (GlnB22-insulin). Diabetologia, 2017, 60(8): 1423-1431.
14. Haataja L, Snapp E, Wright J, et al. Proinsulin intermolecular interactions during secretory trafficking in pancreatic β cells. J Biol Chem, 2013, 288(3): 1896-1906.
15. Wright J, Birk J, Haataja L, et al. Endoplasmic reticulum oxidoreductin-1α (Ero1α) improves folding and secretion of mutant proinsulin and limits mutant proinsulin-induced endoplasmic reticulum stress. J Biol Chem, 2013, 288(43): 31010-31018.
16. He K, Cunningham CN, Manickam N, et al. PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L-p97 axis. Mol Biol Cell, 2015, 26(19): 3413-3423.
17. Cunningham CN, He K, Arunagiri A, et al. Chaperone-driven degradation of a misfolded proinsulin mutant in parallel with restoration of wild-type insulin secretion. Diabetes, 2017, 66(3): 741-753.