华西医学

华西医学

Leber 先天性黑矇患者的临床表型及遗传学分析

查看全文

目的 对 Leber 先天性黑矇(leber congenital amaurosis,LCA)患者的临床表型及基因型进行分析,为家系遗传咨询和产前诊断提供依据。 方法 将 2016 年 6 月—8 月经临床检查确认为 LCA 的 3 例患者及其父母纳入研究,详细收集病史、家族史,患者父母行裂隙灯显微镜、间接检眼镜检查,患者行全身麻醉下 RetcamⅡ眼底血管造影检查。采集患者及其家庭成员外周静脉血,提取全基因组 DNA,采用全外显子组测序技术对 3 例 LCA 患者及其父母进行遗传学诊断及分型,并结合患者的临床特点进行分析。 结果 3 例 LCA 患者临床诊断明确,眼底表现各有差异,患者 1 携带 SPATA7 纯合突变,c.744(E5) 至 c.745(E5) 插入 T, p.249, L>Ffs4,眼底表现为双眼视盘颜色苍白,视盘周围血管闭塞呈“白线”状,视网膜广泛椒盐状色素改变。患者 2 携带WFS1 杂合突变,突变为 4 号染色体 5 号外显子 c.535G>A,p.A179T,眼底表现为双眼视盘苍白,视网膜血管变细。患者 3 携带CRB1RPGRIP1SPATA7 杂合突变,眼底表现为双眼视盘苍白,对称性黄斑色素上皮萎缩,视网膜、脉络膜广泛脱色素及变性。 结论 LCA 具有遗传异质性与临床表型多样性的特点。

Objective To investigate the genotype and phenotype in patients with leber congenital amaurosis (LCA), and offer accurate genetic counseling and prenatal diagnosis for those families. Methods Three LCA patients and their parents were recruited for this study and received detailed collection of medical history and family history from March to August 2016. The three patients received fundus fluorescein angiography examination and their parents received slit-lamp microscope and indirect ophthalmoscopy examinations. DNA was extracted from the patients and their family members. Whole-exome sequencing method was used for genetic diagnosis and typing of the three LCA patients and their parents. Results The three patients with different clinical features had a definite clinical diagnosis of LCA. Patient 1 showed pale disc, attenuated vessels aroud the optic disc and the salt-and-pepper appearance of the retina, had the homozygous c.744.745insT (p.249, L>Ffs4) mutation inSPATA7. Patient 2 showed optic disc pallor and attenuated retinal vessels, had the heterozygous c.535G>A, p.A179T mutation inWFS1. Patient 3 showed pale disc, atrophic macular and retinal and choroidal degeneration, had the heterozygous mutation in CRB1, RPGRIP1, SPATA7. Conclusion LCA has characteristics of genetic heterogeneity and clinical and phenotypic diversity.

关键词: Leber 先天性黑矇; 临床表型; 基因型; 全外显子组测序; 遗传异质性

Key words: Leber congenital amaurosis; Phenotype; Genotype; Whole-exome sequencing; Genetic heterogeneity

引用本文: 周琦, 李自圆, 陆方. Leber 先天性黑矇患者的临床表型及遗传学分析. 华西医学, 2018, 33(11): 1359-1366. doi: 10.7507/1002-0179.201809128 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Wang H, Wang X, Zou X, et al. Comprehensive molecular diagnosis of a large Chinese Leber congenital amaurosis cohort. Invest Ophthalmol Vis Sci, 2015, 56(6): 3642-3655.
2. Leber T. Retinitis pigmentosa und angeborene amaurose. Albrecht von Graefes Arch Ophthal, 1869, 15(3): 1-25.
3. Mayer AK, Mahajnah M, Zobor D, et al. Novel homozygous large deletion including the 5’part of the SPATA7 gene in a consanguineous Israeli Muslim Arab family. Mol Vis, 2015, 21: 306-315.
4. Galvin JA, Fishman GA, Stone EM, et al. Clinical phenotypes in carriers of Leber congenital amaurosis mutations. Ophthalmology, 2005, 112(2): 349-356.
5. Weleber RG, Francis PJ, Trzupek KM, et al. Leber congenital amaurosis. GeneReviews®. (2004-07-07)[2013-05-02]. https://www.ncbi.nlm.nih.gov/books/NBK1298/.
6. den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res, 2008, 27(4): 391-419.
7. Wang P, Guo X, Zhang Q. Further evidence of autosomal-dominant Leber congenital amaurosis caused by heterozygous CRX mutation. Graefes Arch Clin Exp Ophthalmo, 2007, 245(9): 1401-1402.
8. Hosono K, Harada Y, Kurata K, et al. Novel GUCY2D gene mutations in Japanese male twins with Leber congenital amaurosis. J Ophthalmol, 2015: 693468.
9. Katagiri S, Hayashi T, Kondo M, et al. RPE65 mutations in two Japanese families with Leber congenital amaurosis. Ophthalmic Genet, 2016, 37(2): 161-169.
10. Perrault I, Hanein S, Gerard X, et al. Spectrum of SPATA7 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat, 2010, 31(3): E1241-E1250.
11. Bellingham J, Davidson AE, Aboshiha J, et al. Investigation of aberrant splicing induced by AIPL1 variations as a cause of Leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2015, 56(13): 7784-7793.
12. Corton M, Avila-Fernandez A, Vallespín E, et al. Involvement of LCA5 in Leber congenital amaurosis and retinitis pigmentosa in the Spanish population. Ophthalmology, 2014, 121(1): 399-407.
13. Koenekoop RK. RPGRIP1 is mutated in Leber congenital amaurosis: a mini-review. Ophthalmic Genet, 2005, 26(4): 175-179.
14. Nichols LL, Alur RP, Boobalan E, et al. Two novel CRX mutant proteins causing autosomal dominant Leber congenital amaurosis interact differently with NRL. Hum Mutat, 2010, 31(6): E1472-E1483.
15. Vámos R, Külm M, Szabó V, et al. Leber congenital amaurosis: first genotyped Hungarian patients and report of 2 novel mutations in the CRB1 and CEP290 genes. Eur J Ophthalmol, 2016, 26(1): 78-84.
16. Hedergott A, Volk AE, Herkenrath P, et al. Clinical and genetic findings in a family with NMNAT1-associated Leber congenital amaurosis: case report and review of the literature. Graefes Arch Clin Exp Ophthalmol, 2015, 253(12): 2239-2246.
17. Friedman JS, Chang B, Kannabiran C, et al. Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration. Am J Hum Genet, 2006, 79(6): 1059-1070.
18. Sodi A, Caputo R, Passerini I, et al. Novel RDH12 sequence variations in Leber congenital amaurosis. J AAPOS, 2010, 14(4): 349-351.
19. Sénéchal A, Humbert G, Surget MO, et al. Screening genes of the retinoid metabolism: novel LRAT mutation in Leber congenital amaurosis. Am J Ophthalmol, 2006, 142(4): 702-704.
20. Guo Y, Prokudin I, Yu C, et al. Advantage of whole exome sequencing over Allele-specific and targeted segment sequencing in detection of novel TULP1 mutation in Leber congenital amaurosis. Ophthalmic Genet, 2015, 36(4): 333-338.
21. Pattnaik BR, Shahi PK, Marino MJ, et al. A novel KCNJ13 nonsense mutation and loss of Kir7.1 channel function causes Leber congenital amaurosis (LCA16). Hum Mutat, 2015, 36(7): 720-727.
22. Stone EM, Cideciyan AV, Aleman TS, et al. Variations in NPHP5 in patients with nonsyndromic Leber congenital amaurosis and senior-loken syndrome. Arch Ophthalmol, 2011, 129(1): 81-87.
23. Estrada-Cuzcano A, Koenekoop RK, Coppieters F, et al. IQCB1 mutations in patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2011, 52(2): 834-839.
24. Li L, Xiao X, Li S, et al. Detection of variants in 15 genes in 87 unrelated Chinese patients with Leber congenital amaurosis. PLoS One, 2011, 6(5): e19458.
25. Wang X, Wang H, Sun V, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next Generation sequencing. J Med Genet, 2013, 50(10): 674-688.
26. Mackay DS, Ocaka LA, Borman AD, et al. Screening of SPATA7 in patients with Leber congenital amaurosis and severe childhood-onset retinal dystrophy reveals disease-causing mutations. Invest Ophthalmol Vis Sci, 2011, 52(6): 3032-3038.
27. Wang SY, Zhang Q, Zhang X, et al. Comprehensive analysis of genetic variations in strictly-defined Leber congenital amaurosis with whole-exome sequencing in Chinese. Int J Ophthalmol, 2016, 9(9): 1260-1264.
28. Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet, 1998, 20(2): 143-148.
29. Kawano J, Tanizawa Y, Shinoda K. Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system. J Comp Neurol, 2008, 510(1): 1-23.
30. Hofmann S, Philbrook C, Gerbitz KD, et al. Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Hum Mol Genet, 2003, 12(16): 2003-2012.
31. Bujakowska K, Audo I, Mohand-Saïd S, et al. CRB1 mutations in inherited retinal dystrophies. Hum Mutat, 2012, 33(2): 306-315.
32. Hasan SM, Azmeh A, Mostafa O, et al. Coat’s like vasculopathy in Leber congenital amaurosis secondary to homozygous mutations in CRB1: a case report and discussion of the management options. BMC Res Notes, 2016, 9: 91.
33. Pawlyk BS, Bulgakov OV, Liu X, et al. Replacement gene therapy with a humanRPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis. Hum Gene Ther, 2010, 21(8): 993-1004.
34. Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat, 2004, 23(4): 306-317.
35. Galvin JA, Fishman GA, Stone EM, et al. Evaluation of genotype-phenotype associations in Leber congenital amaurosis. Retina, 2005, 25(7): 919-929.
36. Yzer S, Leroy BP, De Baere E, et al. Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2006, 47(3): 1167-1176.
37. Yzer S, Hollander AI, Lopez I, et al. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290. Mol Vis, 2012, 18: 412-425.
38. Gradstein L, Zolotushko J, Sergeev YV, et al. Novel GUCY2D mutation causes phenotypic variability of Leber congenital amaurosis in a large kindred. BMC Med Genet, 2016, 17(1): 52.
39. Tan MH, Mackay DS, Cowing J, et al. Leber congenital amaurosis associated with AIPL1: challenges in ascribing disease causation, clinical findings, and implications for gene therapy. PLoS One, 2012, 7(3): e32330.
40. Hosch J, Lorenz B, Stieger K. RPGR: role in the photoreceptor cilium, human retinal disease, and gene therapy. Ophthalmic Genet, 2011, 32(1): 1-11.
41. Lorenz B, Gyürüs P, Preising M, et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci, 2000, 41(9): 2735-2742.
42. Drivas TG, Holzbaur EL, Bennett J. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest, 1994, 123(10): 4525-4539.
43. Perrault I, Delphin N, Hanein S, et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat, 2007, 28(4): 416.
44. Koenekoop RK, Wang H, Majewski J, et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet, 2012, 44(9): 1035-1039.
45. Hufnagel RB, Ahmed ZM, Corrêa ZM, et al. Gene therapy for Leber congenital amaurosis: advances and future directions. Graefes Arch Clin Exp Ophthalmol, 2012, 250(8): 1117-1128.