华西医学

华西医学

脓毒症相关凝血-炎症评分的构建及其对脓毒症预后评估效能分析

查看全文

目的 基于脓毒症凝血、炎症指标创建脓毒症相关凝血-炎症评分(Sepsis-Related Coagulo-Inflammatory Score,SRCIS),并评估其对脓毒症 28 d 病死率的预测价值。 方法 采用前瞻性巢式病例对照研究,按脓毒症 Sepsis 3.0 标准纳入于 2017 年 9 月—2018 年 1 月在四川大学华西医院急诊科就诊的脓毒症患者,通过多因素分析筛选影响脓毒症 28 d 病死率的凝血、炎症标志物,基于凝血、炎症的独立危险因素创建 SRCIS,验证该 SRCIS 评分对脓毒症预后的评估效能。 结果 纳入合格病例 123 例,其中 28 d 死亡 17 例,病死率为 13.8%。生存组和死亡组的人口学特征和基础疾病等基线差异无统计学意义(P>0.05)。多因素分析显示,活化部分凝血活酶时间(activated partial thromboplastin time,APTT)[比值比(odds ratio,OR)=1.015,95% 置信区间(confidence interval,CI)(1.017,1.189),P=0.017]和 C 反应蛋白(C-reactive protein,CRP)[OR=1.100,95%CI(1.006,1.025),P=0.002]为影响脓毒症 28 d 病死率的独立凝血-炎症危险因素。APTT 和 CRP 预测脓毒症 28 d 病死率的最佳截断值分别为 39.25 s 和 198.05 mg/L,曲线下面积(area under the curve,AUC)分别为 0.618 和 0.671。APTT<39.25 s 时病死率为 8.79%,APTT≥39.25 s 时病死率达 28.13%,差异有统计学意义(P<0.05);CRP<198.05 mg/L 时病死率为 8.89%,CRP≥198.05 mg/L 病死率为 27.27%,差异也有统计学意义(P<0.05)。整合 APTT 和 CRP,基于其各自的最佳截断值综合赋分,创建 SRCIS 评分。SRCIS 评分预测脓毒症 28 d 病死率的 AUC 为 0.707,优于传统的序贯器官衰竭评分(Sequential Organ Failure Assessment,SOFA)(AUC=0.681)和快速序贯器官衰竭评分(quick Sequential Organ Failure Assessment,qSOFA)(AUC=0.695)等脓毒症评估工具。当 SRCIS 评分为 0、1、2 时,对应的脓毒症 28 d 病死率分别为 6.94%、16.22% 和 42.86%,有很高的区分度。 结论 APTT 和 CRP 分别为影响脓毒症 28 d 病死率的独立凝血和炎症因素,相较传统的 SOFA、qSOFA 等工具,基于 APTT 和 CRP 创建的 SRCIS 能更好地预测脓毒症 28 d 病死率。

Objective To build a score with the coagulation, inflammation indexes of sepsis patients, named Sepsis-Related Coagulo-Inflammatory Score (SRCIS), and then evaluate the prognostic capability of it in predicting the 28-day mortality of septic patients after the diagnosis. Methods In this prospective nested case-control study, we recruited septic patients according to the Sepsis 3.0 standards, who visited the Emergency Department, West China Hospital of Sichuan University from September 2017 to January 2018. Multiple factor analysis was conducted to confirm which coagulation or inflammation biomarkers were independent risk factors related to the 28-day mortality after their diagnosis. After that, the SRCIS was built based on those independent risk factors. Finally, receiver operating characteristic curve (ROC) analysis was conducted to verify its prognostic capability for the 28-day mortality of septic patients. Results A total of 123 cases were included. Among them, 17 patients died within 28 days, and the mortality rate was 13.8%. There were no significant differences in the demographic characteristics or comorbidities between the survival group and dead group (P>0.05). Multivariate logistic analysis showed that both activated partial thromboplastin time (APTT) [odds ratio (OR)=1.015, 95% confidence interval (CI) (1.017, 1.189), P=0.017] and C-reactive protein (CRP) [OR=1.100, 95%CI (1.006, 1.025), P=0.002] were independent risk factors for predicting the 28-day mortality of septic patients. ROC analysis indicated that the cut-off values of APTT and CRP predicting the 28-day mortality rate of sepsis were 39.25 seconds and 198.05 mg/L, respectively, and the areas under the curve (AUC) of them were 0.618 and 0.671, respectively. The results indicated that the mortality increased from 8.79% to 28.13%, when APTT prolonged to no less than 39.25 seconds (P<0.05). The mortality also increased from 8.89% to 27.27% when CRP elevated to no less than 198.05 mg/L (P<0.05). The AUC of SRCIS in predicting the 28-day mortality of patients with sepsis was 0.707, which was better than that of Sequential Organ Failure Assessment (SOFA) (AUC=0.681) and quick Sequential Organ Failure Assessment (qSOFA) (AUC=0.695). The corresponding 28-day mortality rates for patients with sepsis were 6.94%, 16.22%, and 42.86% (P<0.05), respectively, when the SRCIS score were 0, 1, and 2. Conclusions APTT and CRP are independent risk factors in predicting the 28-day mortality of patients with sepsis. Compared with traditional scoring systems such as SOFA and qSOFA, SRCIS performances better in predicting the 28-day mortality for patients with sepsis.

关键词: 脓毒症; 预后; 炎症反应; 凝血功能; 评分系统

Key words: Sepsis; Prognosis; Inflammatory; Coagulation function; Scoring system

引用本文: 周亚雄, 李东泽, 姚蓉, 何亚荣, 姚鹏, 曹钰. 脓毒症相关凝血-炎症评分的构建及其对脓毒症预后评估效能分析. 华西医学, 2018, 33(11): 1388-1394. doi: 10.7507/1002-0179.201810125 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016, 315(8): 762-774.
2. Lagu T, Rothberg MB, Shieh MS, et al. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med, 2012, 40(3): 754-761.
3. Hawiger J, Veach RA, Zienkiewicz J. New paradigms in sepsis: from prevention to protection of failing microcirculation. J Thromb Haemost, 2015, 13(10): 1743-1756.
4. Hajj J, Blaine N, Salavaci J, et al. The " Centrality of Sepsis”: a review on incidence, mortality, and cost of care. Healthcare (Basel), 2018, 6(3): 1-11.
5. Milano PK, Desai SA, Eiting EA, et al. Sepsis bundle adherence is associated with improved survival in severe sepsis or septic shock. West J Emerg Med, 2018, 19(5): 774-781.
6. Levy MM, Dellinger RP, Townsend SR, et al. The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med, 2010, 38(2): 367-374.
7. Levi M, van der Poll T. Coagulation in patients with severe sepsis. Semin Thromb Hemost, 2015, 41(1): 9-15.
8. Simmons J, Pittet JF. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol, 2015, 28(2): 227-236.
9. Walborn A, Hoppensteadt D, Syed D, et al. Biomarker profile of sepsis-associated coagulopathy using biochip assay for inflammatory cytokines. Clin Appl Thromb Hemost, 2018, 24(4): 625-632.
10. Hoshino K, Kitamura T, Nakamura Y, et al. Usefulness of plasminogen activator inhibitor-1 as a predictive marker of mortality in sepsis. J Intensive Care, 2017, 5: 42.
11. Su L, Feng L, Song Q, et al. Diagnostic value of dynamics serum sCD163, sTREM-1, PCT, and CRP in differentiating sepsis, severity assessment, and prognostic prediction. Mediators Inflamm, 2013: 969875.
12. Rodelo JR, De la Rosa G, Valencia ML, et al. D-dimer is a significant prognostic factor in patients with suspected infection and sepsis. Am J Emerg Med, 2012, 30(9): 1991-1999.
13. Couto-Alves A, Wright VJ, Perumal K, et al. A new scoring system derived from base excess and platelet count at presentation predicts mortality in paediatric meningococcal sepsis. Crit Care, 2013, 17(2): R68.
14. Jekarl DW, Lee SY, Lee J, et al. Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis, 2013, 75(4): 342-347.
15. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016, 315(8): 801-810.
16. 谢志超, 康焰. 拯救脓毒症运动指南 2016 版指南热点解读. 华西医学, 2018, 33(7): 835-837.
17. Stoller J, Halpin L, Weis M, et al. Epidemiology of severe sepsis: 2008-2012. J Crit Care, 2016, 31(1): 58-62.
18. Hall MJ, Williams SN, Defrances CJ, et al. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief, 2011(62): 1-8.
19. Weycker D, Akhras KS, Edelsberg J, et al. Long-term mortality and medical care charges in patients with severe sepsis. Crit Care Med, 2003, 31(9): 2316-2323.
20. Li D, Zhou Y, Yu J, et al. Evaluation of a novel prognostic score based on thrombosis and inflammation in patients with sepsis: a retrospective cohort study. Clin Chem Lab Med, 2018, 56(7): 1182-1192.
21. Goulet H, Guerand V, Bloom B, et al. Unexpected death within 72 hours of emergency department visit: were those deaths preventable. Crit Care, 2015, 19: 154.
22. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med, 2017, 45(3): 486-552.
23. Kalil AC, Florescu DF. Severe sepsis: are PROWESS and PROWESS-SHOCK trials comparable? A clinical and statistical heterogeneity analysis. Crit Care, 2013, 17(4): 167.
24. Barbash IJ. Immunosuppression and heterogeneity in the sepsis volume-outcome relationship. Ann Am Thorac Soc, 2018, 15(8): 916-918.
25. Sadaka F, Ethmaneabouelmaali C, Cytron MA, et al. Predicting mortality of patients with sepsis: a comparison of APACHE Ⅱ and APACHE Ⅲ scoring systems. J Clin Med Res, 2017, 9(11): 907-910.
26. Khwannimit B, Bhurayanontachai R, Vattanavanit V. Comparison of the performance of SOFA, qSOFA and SIRS for predicting mortality and organ failure among sepsis patients admitted to the intensive care unit in a middle-income country. J Crit Care, 2018, 44: 156-160.
27. 魏薇, 夏义琴, 曹钰. 快速序贯器官衰竭评分对脓毒症休克早期预测能力评价. 华西医学, 2017, 32(6): 812-818.
28. Lipinska-Gediga M. Coagulopathy in sepsis: a new look at an old problem. Anaesthesiol Intensive Ther, 2016, 48(5): 352-359.
29. Levi M. The coagulant response in sepsis. Clin Chest Med, 2008, 29(4): 627.
30. van Vught LA, Wiewel MA, Hoogendijk AJ, et al. The host response in patients with sepsis developing intensive care unit-acquired secondary infections. Am J Respir Crit Care Med, 2017, 196(4): 458-470.
31. Ishikura H, Nakamura Y, Kawano Y, et al. Intravenous immunoglobulin improves sepsis-induced coagulopathy: a retrospective, single-center observational study. J Crit Care, 2015, 30(3): 579-583.
32. Kaneider NC, Förster E, Mosheimer B, et al. Syndecan-4-dependent signaling in the inhibition of endotoxin-induced endothelial adherence of neutrophils by antithrombin. Thromb Haemost, 2003, 90(6): 1150-1157.
33. Esmon CT. New mechanisms for vascular control of inflammation mediated by natural anticoagulant proteins. J Exp Med, 2002, 196(5): 561-564.
34. Gradel KO, Jensen TG, Kolmos HJ, et al. Does C-reactive protein independently predict mortality in adult community-acquired bacteremia patients with known sepsis severity?. APMIS, 2013, 121(9): 835-842.
35. Yamamoto S, Yamazaki S, Shimizu T, et al. Prognostic utility of serum CRP levels in combination with CURB-65 in patients with clinically suspected sepsis: a decision curve analysis. BMJ Open, 2015, 5(4): e007049.
36. Liu D, Su LX, Han GC, et al. Prognostic value of procalcitonin in adult patients with sepsis: a systematic review and Meta-analysis. PLoS One, 2015, 10(6): e0129450.
37. Benediktsson S, Frigyesi A, Kander T. Routine coagulation tests on ICU admission are associated with mortality in sepsis: an observational study. Acta Anaesthesiol Scand, 2017, 61(7): 790-796.
38. Mihajlovic D, Lendak D, Mitic G, et al. Prognostic value of hemostasis-related parameters for prediction of organ dysfunction and mortality in sepsis. Turk J Med Sci, 2015, 45(1): 93-98.