华西医学

华西医学

光相干断层扫描成像技术的进化

查看全文

光相干断层扫描成像(optical coherence tomography,OCT)是一种无创、快速的光学医学诊断成像模式,已成为生物医学领域的研究热点。近年来,许多功能性 OCT 技术不断涌现,包括多普勒 OCT、偏振敏感 OCT、光谱 OCT、光相干断层扫描弹性成像等。这些新技术为观察、理解组织活动提供了当前其他成像技术所无法实现的新方法,从而拓宽了 OCT 技术在临床的应用前景。

Optical coherence tomography (OCT) is a non-invasive, rapid optical medical imaging modality and has become a hot topic in biomedical research. In recent years, several functional OCTs have emerged, including Doppler OCT, polarization-sensitive OCT, spectroscopic OCT, and optical coherence tomographic elastography, etc. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to observe and understand tissue activity that cannot be accomplished by other current imaging methodologies.

关键词: 光相干断层扫描成像; 时域; 傅立叶域; 功能性光相干断层扫描成像

Key words: Optical coherence tomography; Time domain; Fourier domain; Functional optical coherence tomography

引用本文: 吕淑媛, 张明. 光相干断层扫描成像技术的进化. 华西医学, 2018, 33(11): 1344-1348. doi: 10.7507/1002-0179.201811087 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Drexler W, Liu M, Kumar A, et al. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt, 2014, 19(7): 071412.
2. 张芹芹. 谱域光相干层析成像技术及其生物学应用研究. 天津: 南开大学, 2012: 1-5.
3. 吴彤. 扫频光相干层析成像方法与系统研究. 浙江: 浙江大学, 2011: 1-11.
4. Podoleanu AG. Optical coherence tomography. J Microsc, 2012, 247(3): 209-219.
5. 申晓丽, 黄丽娜. 光学相干断层成像技术的临床应用新进展. 国际眼科杂志, 2009, 9(12): 2395-2398.
6. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science, 1991, 254(5035): 1178-1181.
7. Drexler W, Fujimoto JG. Optical coherence tomography-technology and applications. 2nd Ed. Switzerland: Springer International Publishing, 2015: 11-21, 35-45.
8. Swanson EA, Izatt JA, Hee MR, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett, 1993, 18(21): 1864-1866.
9. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol, 1995, 113(3): 325-332.
10. Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology, 1995, 102(2): 217-229.
11. Adhi M, Duker JS. Optical coherence tomography--current and future applications. Curr Opin Ophthalmol, 2013, 24(3): 213-221.
12. Podoleanu AG. Optical coherence tomography. Br J Radiol, 2005, 78(935): 976-988.
13. Fercher AF, Hitzenberger CK, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun, 1995, 117(1/2): 43-48.
14. Wojtkowski M, Leitgeb R, Kowalczyk A, et al. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt, 2002, 7(3): 457-463.
15. Nassif N, Cense B, Park BH, et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett, 2004, 29(5): 480-482.
16. Cense B, Nassif N, Chen T, et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express, 2004, 12(11): 2435-2447.
17. Wojtkowski M, Srinivasan VJ, Ko TH, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express, 2004, 12(11): 2404-2422.
18. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett, 1997, 22(5): 340-342.
19. Yun SH, Gj T, Bouma BE, et al. High-speed spectral-domain optical coherence tomography at 1.3μm wavelength. Opt Express, 2003, 11(26): 3598-3604.
20. Choma M, Sarunic M, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express, 2003, 11(18): 2183-2189.
21. Nassif NA, Cense B, Park BH, et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express, 2004, 12(3): 367-376.
22. Potsaid B, Gorczynska I, Srinivasan VJ, et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70, 000 to 312, 500 axial scans per second. Opt Express, 2008, 16(19): 15149-15169.
23. Golubovic B, Bouma BE, Tearney GJ, et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt Lett, 1997, 22(22): 1704-1706.
24. Oh WY, Yun SH, Gj T, et al. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt Lett, 2005, 30(23): 3159-3161.
25. Srinivasan VJ, Adler DC, Chen YA, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and En face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci, 2008, 49(11): 5103-5110.
26. Huber R, Adler DC, Srinivasan VJ, et al. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236, 000 axial scans per second. Opt Lett, 2007, 32(14): 2049-2051.
27. Kim J, Brown W, Maher JR, et al. Functional optical coherence tomography: principles and progress. Phys Med Biol, 2015, 60(10): R211-R237.
28. Larina IV, Furushima K, Dickinson ME, et al. Live imaging of rat embryos with Doppler swept-source optical coherence tomography. J Biomed Opt, 2009, 14(5): 050506.
29. Peterson LM, Jenkins MW, Gu S, et al. 4D shear stress maps of the developing heart using Doppler optical coherence tomography. Biomed Opt Express, 2012, 3(11): 3022-3032.
30. Wang Y, Lu A, Gil-Flamer J, et al. Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol, 2009, 93(5): 634-637.
31. Wang Y, Bower BA, Izatt JA, et al. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt, 2008, 13(6): 064003.
32. Riva CE, Grunwald JE, Sinclair SH, et al. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci, 1985, 26(8): 1124-1132.
33. Garcia JS, Garcia PT, Rosen RB. Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res, 2001, 42(4, S): S82.
34. Yazdanfar S, Rollins AM, Izatt JA. In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch Ophthalmol, 2003, 121(2): 235-239.
35. White BR, Pierce MC, Nassif N, et al. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Express, 2003, 11(25): 3490-3497.
36. Hee MR, Huang D, Swanson EA, et al. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B, 1992, 9(6): 903-908.
37. Yamanari M, Makita S, Yasuno Y. Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt Express, 2008, 16(8): 5892-5906.
38. Park BH, Saxer C, Srinivas SM, et al. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Opt, 2001, 6(4): 474-479.
39. Lammer J, Bolz M, Baumann B, et al. Detection and analysis of hard exudates by polarization-sensitive optical coherence tomography in patients with diabetic maculopathy. Invest Ophthalmol Vis Sci, 2014, 55(3): 1564-1571.
40. Ford MR, Roy AS, Rollins AM. Serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence elastography. J Cataract Refract Surg, 2014, 40(6, SI): 1041-1047.
41. Chhetri RK, Carpenter J, Superfine R, et al. Magnetomotive optical coherence elastography for relating lung structure and function in Cystic Fibrosis. Proc SPIE Int Soc Opt Eng, 2010: 755420.
42. Liang X, Boppart SA. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans Biomed Eng, 2010, 57(4): 953-959.
43. Srivastava A, Verma Y, Rao KD, et al. Determination of elastic properties of resected human breast tissue samples using optical coherence tomographic elastography. Strain, 2011, 47(1): 75-87.
44. Faber DJ, Mik EG, Aalders MC, et al. Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt Lett, 2003, 28(16): 1436-1438.
45. Faber DJ, Mik EG, Aalders MC, et al. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt Lett, 2005, 30(9): 1015-1017.
46. Graf RN, Robles FE, Chen X, et al. Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. J Biomed Opt, 2009, 14(6): 064030.
47. Fleming CP, Eckert J, Halpern EF, et al. Depth resolved detection of lipid using spectroscopic optical coherence tomography. Biomed Opt Express, 2013, 4(8): 1269-1284.