华西医学

华西医学

免疫介导的坏死性肌病发病机制研究进展

查看全文

免疫介导的坏死性肌病(immune-mediated necrotizing myopathy,IMNM)是一种以严重的近端肢体无力、肌酸激酶升高、肌肉活检缺乏炎性细胞浸润和少见的肌肉外累及症状为特征的自身免疫性肌病,目前其发病机制并不清楚。新的欧洲神经肌肉中心标准根据不同的自身抗体将其分为 3 种亚型,提示抗体可能参与了 IMNM 的发病机制,且不同亚型可能具有不同发病机制。该文就目前关于 IMNM 发病机制的研究进行了综述。

Immune-mediated necrotizing myopathy (IMNM) is a type of autoimmune myopathy characterized by relatively severe proximal weakness with high serum muscle enzyme levels, myofiber necrosis with minimal inflammatory cell infiltrate on muscle biopsy, and infrequent extra-muscular involvement. The mechanism of necrotizing myopathy remains unclear. The new European Neuromuscular Centre criteria divides IMNM into three distinct subtypes according to different autoantibodies, which reminds us antibodies may be involved in the pathogenesis of IMNM and different subtypes may have different pathogenesis. This review summarizes the current understanding of the pathogenesis of IMNM.

关键词: 免疫介导的坏死性肌病; 自身抗体; 发病机制; 自身免疫

Key words: Immune-mediated necrotizing myopathy; Autoantibody; Pathogenesis; Autoimmunity

引用本文: 刘陶, 刘欢, 林桑, 黄煜鹏, 谢其冰. 免疫介导的坏死性肌病发病机制研究进展. 华西医学, 2018, 33(12): 1549-1553. doi: 10.7507/1002-0179.201811173 复制

1. McCombs RP, MacMahon HE. Dermatomyositis associates with metastasizing bronchogenic carcinoma; a clinicopathological conference. Med Clin North Am, 1947, 31(5): 1148-1162.
2. Krolikowska W, Pawlikowski M, Prusinski A, et al. A case of non specific myopathy with characteristics of necrotizing myopathy. Neurol Neurochir Psychiatr Pol, 1963, 13: 365-367.
3. Emslie-Smith AM, Engel AG. Necrotizing myopathy with pipestem capillaries, microvascular deposition of the complement membrane attack complex (MAC), and minimal cellular infiltration. Neurology, 1991, 41(6): 936-939.
4. Allenbach Y, Mammen AL, Benveniste O, et al. 224th ENMC International Workshop: Clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14-16 October 2016. Neuromuscul Disord, 2018, 28(1): 87-99.
5. Kishi T, Rider LG, Pak K, et al. Association of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies with DRB1*07:01 and severe myositis in juvenile myositis patients. Arthritis Care Res (Hoboken), 2017, 69(7): 1088-1094.
6. SEARCH Collaborative Group, Link E, Parish S, et al. SLCO1B1 variants and stain induced myopathy: a genome wide study. N Engl J Med, 2008, 359(8): 789-799.
7. Patel J, Superko HR, Martin SS, et al. Genetic and immunologic susceptibility to statin-related myopathy. Atherosclerosis, 2015, 240(1): 260-271.
8. Thompson PD, Panza G, Zaleski A, et al. Statin-associated side effects. JACC, 2016, 67(20): 2359-2410.
9. Muntean DM, Thompson PD, Catapano AL, et al. Statin-associated myopathy and the quest for biomarkers: can we effectively predict statin-associated muscle symptoms?. Drug Discov Today, 2017, 22(1): 85-96.
10. Leff RL, Burgess SH, Miller FW, et al. Distinct seasonal patterns in the onset of adult idiopathic inflammatory athy in patients with anti-Jo-1 and anti-signal recognition particle autoa-ntibodies. Arthritis Rheum, 1991, 34(11): 1391-1396.
11. Allenbach Y, Keraen J, Bouvier AM, et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain, 2016, 139(8): 2131-2135.
12. Christopher-Stine L, Casciola RL, Hong G, et al. A Noel autoantibody recognizing 200-kd and 100-kd proteins is associate-ed with an immune-mediated necrotizing myopathy. Arthritis Rheum, 2010, 62(9): 2757-2766.
13. Mammen AL, Chung T, Christopher-Stine L, et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum, 2011, 63(3): 713-721.
14. Istvan ES, Palnitkar M, Buchanan SK, et al. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J, 2000, 19(5): 819-830.
15. Brown MS, Faust JR, Goldstein JL, et al. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem, 1978, 253(4): 1121-1128.
16. Nakanishi M, Goldstein JL, Brown MS, et al. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalon-ate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J Biol Chem, 1988, 263(18): 8929-8937.
17. Morikawa S, Murakami T, Yamazaki H, et al. Analysis of the global RNA expression profiles of skeletal muscle cells treated with statins. J Atheroscler Thromb, 2005, 12(3): 121-131.
18. Joseph CG, Darrah E, Shah AA, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science, 2014, 343(6167): 152-157.
19. Arouche-Delaperche L, Allenbach Y, Amelin D, et al. Pathogenic role of anti-signal recognition protein and anti-3-hydroxy-3-met-hylglutaryl CoA reductase antibodies in necrotizing myopathies: myofiber atrophy and impairment of muscle regeneration in necrotizeng autoimmune myopathies. Ann Neurol, 2017, 81(4): 538-548.
20. Allenbach Y, Arouche-Delaperche L, Preusse C, et al. Necrosis in anti-SRP+ and anti-HMGCR+ myopathies: role of autoantibodies and complement. Neurology, 2018, 90(6): e507-e517.
21. Reeves WH, Nigam SK, Blobel G. Human autoantibodies reactive with the signal-recognition particle. Proc Natl Acad Sci USA, 1986, 83(24): 9507-9511.
22. Miller T, Al-Lozi MT, Lopate G, et al. Myopathy with antibodies to the signal recognition particle: clinical and pathological features. J Neurol Neurosurg Psychiatry, 2002, 73(4): 420-428.
23. 汪茜, 蒲传强. 抗信号识别颗粒抗体阳性坏死性肌病研究进展. 国际神经病学神经外科学杂志, 2013, 40(4): 359-362.
24. Römisch K, Miller FW, Dobberstein B, et al. Human autoantibodies against the 54 kDa protein of the signal recognition particle block function at multiple stages. Arthritis Res Ther, 2006, 8(2): R39.
25. Racanelli V, Prete M, Musaraj G, et al. Autoantibodies to intracellular antigens: generation and pathogenetic role. Autoimmun Rev, 2011, 10(8): 503-508.
26. Rojana-Udomsart A, Mitrpant C, Bundell C, et al. Complement-mediated muscle cell lysis: a possible mechanism of myonecrosis in anti-SRP associated necrotizing myopathy (ASANM). J Neuroimmunol, 2013, 264(1/2): 65-70.
27. Chung T, Christopher-Stine L, Paik JJ, et al. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve, 2015, 52(2): 189-195.
28. Saclier M, Yacoub-Youssef H, Mackey AL, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells, 2013, 31(2): 384-396.
29. Knauβ S, Allenbach Y, Preuße C, et al. PD1 and PDL2axis confers T cell exhaustion in anti-SRP+ and anti-HMGCR+ myopathies. Neuromuscular Disorders, 2017(2017): S96-S249.
30. Luo SL, Xie YG, Li Z, et al. Ecadherin expression and prognosis of oral cancer: a meta-analysis. Tumour Biol, 2014, 35(6): 5533-5537.
31. 许静, 蒲传强, 石强, 等. 高迁移率族蛋白 1 在免疫性坏死性肌病的发病机制作用//中华医学会第十七次全国神经病学学术会议论文汇编, 北京: 中华医学会, 2014: 132.
32. Wan ZM, Zhang XJ, Peng AP, et al. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I. Int Immunopharmacol, 2016, 41(41): 74-81.
33. 张媛, 丁树哲. 运动性骨骼肌内质网应激与线粒体功能调控. 中国体育科技, 2017, 53(4): 91-96.
34. Li CK, Knopp P, Moncrieffe H, et al. Overexpression of MHC class Ⅰ heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am J Pathol, 2009, 175(3): 1030-1040.
35. Needham M, Fabian V, Knezevic W, et al. Progressive myopathy with upregulation of MHC-Ⅰ associated with statin therapy. Neuromuscul Disord, 2006, 17(2): 194-200.
36. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res, 2005, 8(1): 3-5.
37. Matsubara S, Bokuda K, Asano Y, et al. Mitophagy in three cases of immune-mediated necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies: ultrastructural and immune-histochemical studies. Neuromuscul Disord, 2018, 28(3): 283-288.
38. Nogalska A, D’Agostino C, Terracciano C. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am J Pathol, 2010, 177(3): 1377-1387.
39. Egerer T, Martinez-Gamboa L, Dankof A, et al. Tissue-specific up-regulation of the proteasome subunit beta5i (LMP7) in Sjögren’s syndrome. Arthritis Rheum, 2006, 54(5): 1501-1508.
40. Krause S, Kuckelkorn U, Dornri T, et al. Immuno-proteasome subunit L-MP2 expression is deregulated in Sjogren’s syndrome but not in other autoimmune disorders. Ann Rheum Dis, 2005, 65(8): 1021-1027.
41. 李珍, 罗玉凤, 曹金伶, 等. 免疫蛋白酶体亚基在干燥综合征唇腺中的表达. 中国医学科学院学报, 2011, 33(2): 146-150, 220.
42. Bhattarai S, Ghannam K, Krause S, et al. The immunoproteasomes are key to regulate myokines and MHC class Ⅰ expression in idiopathic inflammatory myopathies. J Autoimmun, 2016, 75: 118-129.